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A Prediction-Based Green Scheduler for Datacenters in Clouds
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SUMMARY With energy shortages and global climate change leading
our concerns these days, the energy consumption of datacenters has become
a key issue. Obviously, a substantial reduction in energy consumption can
be made by powering down servers when they are not in use. This paper
aims at designing, implementing and evaluating a Green Scheduler for re-
ducing energy consumption of datacenters in Cloud computing platforms.
It is composed of four algorithms: prediction, ON/OFF, task scheduling,
and evaluation algorithms. The prediction algorithm employs a neural pre-
dictor to predict future load demand based on historical demand. According
to the prediction, the ON/OFF algorithm dynamically adjusts server allo-
cations to minimize the number of servers running, thus minimizing the
energy use at the points of consumption to benefit all other levels. The
task scheduling algorithm is responsible for directing request traffic away
from powered-down servers and toward active servers. The performance is
monitored by the evaluation algorithm to balance the system’s adaptabil-
ity against stability. For evaluation, we perform simulations with two load
traces. The results show that the prediction mode with a combination of
dynamic training and dynamic provisioning of 20% additional servers can
reduce energy consumption by 49.8% with a drop rate of 0.02% on one
load trace, and a drop rate of 0.16% with an energy consumption reduction
of 55.4% on the other.
key words: energy savings, green scheduling, neural predictor, cloud com-
puting, datacenters

1. Introduction

Cloud computing [1] has emerged as a new business model
of computation and storage resources based on on-demand
access to potentially significant amounts of remote datacen-
ter capabilities. However, the deployment of datacenters in
Clouds has put more and more computers in use each year,
increasing energy consumption and pressure on the environ-
ment. Research shows that running a single 300-watt server
during a year can cost about $338, and more importantly,
can emit as much as 1,300 kgCO2, without mentioning the
cooling equipment [2]. A recent report has estimated the
datacenters in the US consumed approximately 1.5% of the
total electricity consumption in 2006, and this number is
projected to double in 2011 [3]. Likewise, Green IT Ini-
tiative has reported that the amount of data and the energy
consumption of IT devices in Japan are estimated to grow by
100-200 times and 5 times, respectively, by 2025. Japan has
been actively involved in efforts to establish a post-Kyoto
framework, and has proposed to reduceCO2 emissions at
least by half by 2050 [4].

The existing techniques for energy savings in the
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area of enterprise power management at a server farm can
roughly be divided into two categories: dynamic volt-
age/frequency management inside a server, and shutting
down servers when not in use. In the former, power savings
are gained by adjusting the operating clock to scale down
the voltage supply for the circuits. Although this approach
can provide a significant reduction in power consumption,
it depends on the hardware components’ settings to perform
scaling tasks. On the other hand, the latter promises most
power savings, as it ensures near-zero electricity consumed
by the off-power servers. However, previous work which
took this approach had difficulties in assuring service-level
agreement due to the lack of a reliable tool for predicting fu-
ture demand to assist in the turning off/on decision-making
process.

In this paper, we aim to design, implement and evalu-
ate a Green Scheduler for reducing energy consumption of
datacenters in Cloud computing environments by shutting
down unused servers. The neural predictor which we had
developed earlier has been proven to have accurate predic-
tion ability with low overhead suitable for dynamic real time
settings [5]. The use of this predictor will help the scheduler
cleverly make appropriate turning off/on decisions, and will
make the approach more practical. As virtual machines are
spawned on demand to meet the user’s needs in Clouds, the
neural predictor will be employed to predict future load de-
mand on servers based on historical demand.

Our scheduler is composed of four algorithms that
work as follows. The predictor is used in the prediction al-
gorithm to predict request load, based on which the ON/OFF
algorithm computes the number of active servers needed to
process the load [6]. Then unnecessary servers are turned
off in order to minimize the number of servers running, thus
minimizing the energy use at the points of consumption to
provide benefits to all other levels. The task scheduling al-
gorithm schedules the incoming tasks, representing the cur-
rent aggregate load level, to run on the active server set. Fi-
nally, the evaluation algorithm monitors the performance to
dynamically adapt to load changes over time. The bottom
line is to protect the environment and to reduce the total cost
of ownership while ensuring quality of service.

For evaluation, we perform simulations using the
CloudSim and GridSim toolkits. We add an energy di-
mension to the toolkits and implement the components of
the Green Scheduler. In addition, we develop five running
modes for the purpose of examining the impact of different
methods for estimating the number of active servers. They
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Fig. 1 The system model.

are executed with two real workload traces collected on the
Internet and on four datacenter architectures.

Our main contribution in this paper is the design, im-
plementation, and experimental evaluation of the Green
Scheduler. The novelty of our solution lies in its integra-
tion of the neural predictor and the development of policies
for dynamic training and dynamic provisioning of additional
servers, as well as considering server’s timing requirements.
Another unique feature of our work is to compare the perfor-
mance of our algorithms with optimal solutions and another
algorithm empirically, in addition to performance compari-
son of running modes among themselves.

The remainder of this paper is organized as follows.
Section 2 describes the system model and examines the
power consumption of servers. Architecture of the Green
Scheduler is presented in Section 3. Section 4 analyzes our
experimental results. Finally, we introduce some major re-
lated work in Section 5 and conclude our study in Section
6.

2. System Model and Power Consumption

2.1 System Model

Fig. 1 depicts the system model that we consider in this pa-
per. Actually, it represents a simple architecture of Cloud
computing, where a Cloud provider, consisting of a collec-
tion of datacenters and CISRegistry (Cloud Information Ser-
vice Registry), provides utility computing service to Cloud
users/DCBrokers. The Cloud users in turn use the utility
computing service to become SaaS providers and provide
web applications to their end users.

A request from a Cloud user is processed in several
steps, as follows.

1. Datacenters register their information to the CISReg-
istry.

2. A Cloud user/DCBroker queries the CISRegistry for
the datacenter information.

3. The CISRegistry responds by sending a list of available
datacenters to the user.

4. The user requests processing elements through virtual
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Fig. 2 CPU utilization and power consumption.

machine creation.
5. The list of available virtual machines is sent back

for processing requests from end users to the services
hosted by the user.

A datacenter consists of a set of hundreds to thousands
of processing servers. It has several controllers which have
three main functions: (1) registering the datacenter informa-
tion to the CISRegistry, (2) accepting requests from Cloud
users, and (3) running the Green Scheduler to distribute
load among virtual machines, making decisions on creation
and suppression of virtual machines in servers, and turning
off/on servers for energy savings. A server is responsible for
managing virtual machines it is hosting. A server can host
multiple virtual machines at the same time, but one virtual
machine can be hosted in only one server. Virtual machines
appear as processing elements from the viewpoint of Cloud
users.

2.2 Power Consumption

Understanding the relationship between power consumption
and CPU utilization of servers is essential to design efficient
strategies for energy savings. We examined this relationship
by measuring power consumption of typical machines in
different states. The machines we used are a Linux machine
with AMD Phenom 9500 Quad-Core Processor 2.2GHz,
and a Windows machine with AMD Athlon 64 X2 Dual-
Core Processor 5000+ 2.6GHz. They were connected to a
System Artware SHW3A watt-hour meter at the power plug,
to record power consumption of the whole machine.

Fig. 2 shows power consumption of the two machines
in the idle state and at different CPU utilization levels, rang-
ing from 10% to 100%. In the Linux machine, the CPU
load is generated using the lookbusy load generator, to at-
tempt to keep the CPUs at a chosen utilization level, while
in the Windows machine, load is generated by a simple loop
written in C#. To obtain more accurate data, the CPU uti-
lization is maintained at a stable state for 5 minutes, and the
average recorded power consumption over the period is re-
ported. The power consumption appears to be almost linear
to CPU utilization. An increase of 10% in CPU utilization
leads to increases of approximately 6.5% and 3% in power
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Fig. 3 Architecture of the Green Scheduler.

consumption in the quad-core and dual-core machines, re-
spectively. Also, we observe that the idle state consumes a
substantial amount of energy, as much as 62%, in the case
of the quad-core machine, and 78% in the case of the dual-
core machine, of peak power. This observation implies that
there is room for power conservation and hence, a large en-
ergy reduction can be achieved by sending idling servers to
a lower power state.

Based on these empirical measurements, we can eas-
ily model the relationship between energy consumption and
CPU utilization using the following formula:

En = PI + (PM − PI ) ×
n

100
(1)

whereEn is the energy consumption atn% CPU utilization,
andPM andPI are the power consumption at maximum uti-
lization and idle, respectively.

We can then calculate the energy consumption of a
server operating atn(t)% CPU utilization over a periodTrun

as:

Erun =

Trun∑
t=1

PI + (PM − PI ) ×
n(t)
100

(2)

3. The Green Scheduler

In this section we present the architecture of the Green
Scheduler, focusing primarily on its components and their
main duties. As plotted in Fig. 3, the scheduler is composed
of four algorithms in order of execution: the prediction,
ON/OFF, task scheduling, and evaluation algorithms. The
scheduler starts execution at regular time intervals by run-
ning the prediction algorithm to collect historical load, and
predict loads in the future based on the historical load. De-
pending on the predicted future load, the ON/OFF algorithm
dynamically adjusts server allocations to minimize energy
consumption. The task scheduling algorithm then schedules
the incoming tasks, representing the current aggregate load
level, to run on the active server set. Finally, the perfor-
mance is evaluated and monitored by the evaluation algo-
rithm to ensure the ability of the scheduler to adapt to load
changes over time.

3.1 The Prediction Algorithm

The prediction algorithm actually makes use of a neural pre-
dictor. A three-layer neural network predictor in operation
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Fig. 4 A three-layer neural network predictor.

with a time series input is displayed in Fig. 4. The network
has 4 network inputs where external information is received,
and 1 output layer C with one unit where the solution is ob-
tained. The network input and output layers are separated
by 2 hidden layers: layer A with 4 units and layer B with 3
units. The connections between the units indicate the flow
of information from one unit to the next, i.e., from left to
right.

In order to make meaningful predictions, the neural
network needs to be trained on an appropriate data set. Ba-
sically, training is a process of determining the connection
weights in the network. Examples of the training data set
are in the form of<input vector, output vector> where input
vector and output vector are equal in size to the number of
network inputs and outputs, respectively. The final goal is to
find the weights that minimize some overall error measure,
such as the sum of squared errors or mean squared errors.

We have developed a neural predictor and performed
experiments to prove its accurate prediction ability with low
overhead suitable for dynamic real time settings similar to
this system model [5]. For example, the 20:10:1 network
with a learning rate of 0.3 has reduced the mean and stan-
dard deviation of the prediction errors by approximately
60% and 70%, respectively. The network needs only a few
seconds to be trained with more than 100,000 samples, and
then makes tens of thousands of accurate predictions within
a second, without the need to be trained again.

3.2 The ON/OFF Algorithm

The ON/OFF algorithm, detailed in Fig. 5, is a key compo-
nent in determining which servers should be turned off/on.
Due to the wear-and-tear problem, it recruits and retires
servers using a simple round-robin policy to evenly dis-
tribute the on/off cycles among them. This algorithm will
turn on servers when the load increases and vice versa, turn
off servers when the load decreases. However, as it takes
some time for a server to come to full operation, it must be
turned on before it is actually needed. Hence, the number
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Inputs: list of servers in the datacenter and their current 

states; TRESTARTING: delay necessary for a server to come to 

ON from OFF; C: server capacity. 

Output: ON/OFF decisions, and updated list of servers. 

Do 

Ask the predictor to predict loads from time t to time t + 

TRESTARTING based on the collected historical loads during the 

period of [0, t - 1] 

Find the peak load Lp from time t to time t + TRESTARTING

Find the number of servers necessary at time t: Nt = � Lp

div C �

Assume Nc = number of servers in ON state 

If  Nt = Nc: no action 

Else if Nt > Nc: choose (Nt - Nc) servers in OFF state and 

signal them to restart 

Else if Nt < Nc: choose (Nc - Nt) servers in ON state with 

free processing cores, and signal them to shutdown.

Fig. 5 The ON/OFF algorithm.

of running servers at any timet must be sufficient to tolerate
the peak load until more servers are ready to share the load.
Also, to assure service-level agreement, each server must
not be loaded to more than its capacityC, and one process-
ing core should be allocated to only one virtual machine.

A server can be in one of the following four states:
OFF, RESTARTING, ON, and SHUTTING. Initially all
servers are in the OFF state, which is actually a selected
low-power state to which a server is sent for energy savings.
Upon receiving a restart signal, the server moves from OFF
to RESTARTING. It will stay in this state forTRES T ART ING

seconds before coming to ON. The ON state implies that the
server is idling, waiting for a user’s request or processing it.
Likewise, when a server is signaled to turn off, it will change
state and stay in the SHUTTING state forTS HUTT ING sec-
onds before completely changing its state to OFF. The en-
ergy consumption in ON state is estimated from equation
(2), where the CPU utilization level can be approximated
as:

n(t) =
r(t)
C
× 100% (3)

wherer(t) is the number of requests being processed by the
server at the time.

3.3 The Task Scheduling Algorithm

The task scheduling algorithm simply spreads request loads
from all services evenly across the entire active server pool.
As can be seen in Fig. 6, it applies the Earliest Deadline First
strategy to the task queue, and the Largest Capacity First
strategy to the virtual machine pool to be allocated to task
processing. Once it has finished processing, it will report
the number of missed deadlines, or drop rate, and redundant
virtual machines, if any.
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Fig. 6 The task scheduling algorithm.

3.4 The Evaluation Algorithm

This algorithm involves developing a performance monitor-
ing mechanism to sufficiently adapt to meaningful workload
changes over time. However, it must also have the ability to
avoid overreacting to noise in workload fluctuations. That
said, the performance monitoring mechanism must balance
adaptability with stability. One unique feature of the neural
predictor is that it can be trained with the most up-to-date
training data to reflect workload changes when possible. A
major duty of this algorithm is to find the suitable training
epochs during execution, because the system may oscillate
if the epochs are too short for the servers to stabilize after
each round of training, or it may not be able to dynamically
adapt if the epochs are too long. In addition, it establishes a
policy for dynamic provisioning of additional servers, with
the aim of improving performance.

We propose two training policies, which we call static
training and dynamic training. In static training, the training
phase takes place at regular time intervals, making it easy
to identify training epochs. As persistent load increase and
decrease caused by shifts in users’ requests tend to occur on
the scale of hours rather than seconds, the training phase can
be performed on a daily or hourly basis. The downside of
this policy is that training occurs regardless of performance.

In dynamic training, our solution holds a sliding win-
dow moving average of sizeS1, and maintains an error
term MS PE (Mean Squared Prediction Error). IfMS PE
of the moving average of recent observations exceeds a pre-
defined error thresholdErr, the training process will be trig-
gered. Otherwise, the system is said to be stable, and no
training is needed.MS PEis identified based on the follow-
ing equation.

MS PE=
1

S1

T−1∑
i=T−S1

(Pi − Ai)
2 (4)

whereT is the current time,S1 is the window size, andPi
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Fig. 7 The evaluation algorithm.

andAi are, respectively, the predicted workload and the ac-
tual workload at timei.

Although we adopt a relatively aggressive performance
monitoring mechanism in training policies, prediction errors
are unavoidable. To tackle the shortage of servers in case
the requested load is more than the capacity of the provided
servers, a given number of servers, called additional servers,
are added to assure service-level agreement. For example,
if the predictor predicts 5 servers and we use 2 additional
servers, we will actually use 5+ 2= 7 servers instead of only
5. In order to avoid over-provisioning, we establish a policy
to dynamically adjust the number of additional servers based
on two factors: missed deadlines and redundant virtual ma-
chines. In this policy, we examine two series,MDL (missed
deadlines) andRVM (redundant virtual machines) in a slid-
ing window moving average of sizeS2. Suppose we are at
current timeT. If MDL = {Xi = 0 : ∀i ∈ [T − S2,T − 1]}
andRVM = {Yi > 0 : ∀i ∈ [T − S2,T − 1]}, we will de-
crease the number of additional servers due to possible over-
provisioning. IfMDL = {Xi > 0 : ∀i ∈ [T − S2,T − 1]} and
RVM= {Yi = 0 : ∀i ∈ [T − S2,T − 1]}, this number will be
increased to avoid under-provisioning of servers. The dy-
namic training policy and dynamic provisioning policy of
additional servers are illustrated in Fig. 7.

4. Experimental Evaluations

4.1 Simulator Description

The simulations were conducted on our SGI Altix XE nodes
having configuration: Intel Quad-Core Xeon, 8GB RAM,
Linux OS, and JDK 1.6. We performed simulations using
the CloudSim and GridSim toolkits [7], [8]. Certain consid-
erable custom modifications were made to meet our needs,

�

�

Fig. 8 The modified communication flow.

notably:

• We added a new dimension to the toolkits, the energy
dimension, to calculate energy consumption, to enable
the servers’ different states, to shutdown and restart
servers, etc.
• We added the components of the Green Scheduler.

In addition, we modified the original CloudSim com-
munication flow, to the flow shown in Fig. 8. First, each dat-
acenter registers itself with the CISRegistry. The datacen-
ter broker queries the CISRegistry for a list of datacenters
which offer services matching the user’s application require-
ments, on behalf of users. The broker then deploys the ap-
plication (with the matching datacenter) for processing. The
simulation ends after this process has been completed in the
original flow. Therefore, we added a new entity, called User
Workload Generator, to periodically impose load on the sys-
tem for N time intervals. Virtual machines are created and
destroyed at each step, without virtual machine migration,
because client’s requests are supposed to be completely pro-
cessed within the step.

The workload is defined as the number of requests from
end users. The loads are generated in the same shapes as
the traces containing all requests to NASA and ClarkNet
web servers [9]. In the generated traces, timestamp is com-
pressed to 5 second resolution, and the load curve is scaled
to the total capacity of all processing cores in the datacen-
ters in the simulations. The characteristics of these work-
loads are displayed in Table 1. They exhibit typical work-
load characteristics of web servers: heavily loaded during
daytime and lightly loaded during the night.

In the simulations, we assume that each server has a ca-
pacityC of 1000 requests in an interval for one processing
core, and calculate the number of required servers for the
requests. Two types of servers are considered: single-core
servers and quad-core servers. Server’s total capacity is as-
sumed to be linear with the number of processing cores. The
number of requests that exceed its capacity is considered as
drops. The drop rate is defined as the ratio of the number of
requests that exceed servers’ capacity to the total number of
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Table 1 Workload characteristics.

Characteristic NASA ClarkNet
Mean request 4.4 13.51

Standard deviation 3.64 8.89
Maximum request 33 80
Minimum request 0 0

requests. Based on the measurement results in Section 2.2,
we assume that states OFF, RESTARTING, SHUTTING,
and idle consume 7W, 150W, 150W, and 100W, respectively.
Also, transition delaysTRES T ART INGandTS HUTT INGare set
to 20 seconds and 10 seconds, respectively.

In order to compare different methods for estimating
the number of active servers, we examine the following five
different running modes.

• Normal mode (NM) - The traditional mode where all
the servers are kept running all the time regardless of
load. It is actually a baseline mode for calculating the
energy consumption reduction rate in other modes.
• Optimal green mode (OP) - Future load is exactly

known in advance and the number of necessary servers
at each step can be correctly identified.
• Prediction green mode (PR) - Future load is predicted

by the predictor, and the number of servers necessary at
each step is identified based on the predicted load. The
predictor is employed under the network of 20:10:1
with a constant learning rate of 0.3 as mentioned ear-
lier.
• Prediction mode with a tendency-based strategy (PT) -

Future load is predicted by a five-step-ahead prediction
strategy, as proposed by Zhang et al. in [10].
• Prediction mode plus additional servers (PP): similar to

PR, except for the provision of some additional servers.
In the simulations, this mode is run with approximately
10% and 20% of the total number of available servers
as additional servers.

4.2 Static Training vs. Dynamic Training

This section compares static and dynamic training policies
to find suitable training epochs during execution. Fig. 9
shows the experimental results of static and dynamic train-
ing policies with NASA and ClarkNet on a 32-single-core
datacenter. In Fig. 9 (a), the neural predictor is trained ev-
ery 1 day, 10 hours, 5 hours, 2 hours, 1 hour, 30 minutes,
20 minutes, and 10 minutes. In Fig. 9 (b) and (c), 8 differ-
ent values of the error thresholdErr taken in the range of
[0.001, 0.02] is enforced in the system, along with the win-
dow sizesS1 of 5-minute-period and 1-hour-period.

In static training policy, it appears that no common
training frequency can lead to the best performance in both
workloads, as the drop rate fluctuates according to the fre-
quency of training. On NASA, the lowest drop rate (14.9%)
is gained by a period of 10 hours, while a period of 2 hours
offers the lowest drop rate of 7.3% on ClarkNet. The results
imply that choosing an appropriate training period will im-
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Fig. 9 Static training vs. Dynamic training.

prove performance, even though the period can mainly be
identified empirically.

However, choosing the right training period dynami-
cally is perhaps a clever option. In that regard, the dynamic
training policy is likely more promising in terms of both
adaptability and performance. An error threshold of 0.002
with a window size of 5-minute-period leads to the best
performance in both workloads, with drop rates of 11.8%
(NASA) and 5.6% (ClarkNet). This policy requires an aver-
age training period of 12 minutes to achieve this improved
performance. The window size of 1-hour-period cannot out-
weigh the static training, however, possibly due to low train-
ing frequency caused by the large window size. A one-hour
window results in high drop rates, starting from 15.2% on
NASA and 7.0% on ClarkNet. The outcome confirms the
importance of window size in dynamic training policy, and
a window size of 5-minute-period with an error threshold
of 0.002 proves to be the best. Consequently, we used the
configuration of 5-minute-period window and threshold of
0.002 in our subsequent experiments.
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4.3 Combination of Dynamic Training and Dynamic Pro-
visioning of Additional Servers

Despite the fact that dynamic training has an edge over static
training, it still needs provisioning of additional servers to
reduce the drop rate. Fig. 10 presents the results of combi-
nation of dynamic training and dynamic provisioning with
NASA and ClarkNet on a 32-single-core datacenter. We use
the best configuration of a 5-minute-period window and an
error threshold of 0.002 in dynamic training, combined with
10% (PP10) and 20% (PP20) of the total servers as addi-
tional servers. These numbers, however, are dynamically
adjusted in different window sizes of 1 minute (WS1), 2
minutes (WS2), 3 minutes (WS3), and 4 minutes (WS4).
A window size of zero (WS0) indicates no adjustment in the
number of additional servers.

In PP10 and PP20 modes with both workloads, WS3
and WS4 show no effect as their drop rates and energy con-
sumption amounts remain unchanged in comparison with
WS0. This means dynamic provisioning policy does not
work with large windows. With smaller windows WS1 and
WS2, it tends to reduce the energy consumption, with the
trade-off of causing slightly higher drop rates. In the case
of either WS1 or WS2, the energy consumption amounts
are decreased, and up to 5.7% (on NASA) and 7.4% (on
ClarkNet) lower than the baseline WS0. Overall, the provi-
sioning of additional servers drastically cuts the drop rates,
with the lowest drop rates of 0.24% on NASA and 0.11% on
ClarkNet. This is a significant improvement compared with
the pure dynamic training policy discussed in the preceding
section.

4.4 Power and Performance

In this section, we rigorously perform experiments with the
two workloads in five different running modes and four dat-
acenters to:

• Find out the relationship between the drop rate (perfor-
mance) and the energy reduction rate (power);
• Identify the best prediction mode that can offer high en-

ergy reduction rates while maintaining low drop rates;
• Calculate the training and ON/OFF periods required in

each mode;
• Examine the impact of datacenter architecture on en-

ergy consumption; and
• Make performance comparison between the two work-

loads.

Table 2 and Table 3 show the results on NASA and
ClarkNet load traces, respectively, with the best of each case
displayed in boldface. The number of servers in the data-
centers was varied from 64, a representation of small-size
datacenters, to 512, a representation of medium-size data-
centers, each with two types of single-core and quad-core.
PR employs a dynamic training policy with 5-minute-period
window size and an error threshold of 0.002. Meanwhile,
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Fig. 10 Dynamic training and dynamic provisioning.

PP20 operates with dynamic provisioning of 20% additional
servers and a monitor window size of 2 minutes. The results
presented here include the energy consumption reduction
rate, which is the ratio of the energy consumption of each
mode to that of the baseline normal mode, the drop rate, the
required training period of the neural predictor, and the aver-
age ON/OFF period for one server. The energy consumption
has a direct relationship withCO2 emissions. They do not
reflect the energy savings for ventilation and air condition-
ing systems, resulting from the reduced thermal load from
active servers.

First of all, we note an obvious relationship between
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Table 2 Performance on NASA with the best of each case displayed in boldface.

Data- 

center 
Mode 

Energy  

(MJ) 

Reduction 

Rate (%)

Drop Rate 

(%) 

Training 

Period 

(minute)

ON/OFF 

Period 

(minute) 

Data-

center
Mode

Energy 

(MJ) 

Reduction 

Rate (%) 

Drop Rate 

(%) 

Training 

Period 

(minute) 

ON/OFF 

Period 

(minute)

64  

Single- 

Core 

Servers 

OP 2005.9  74.1  0.0 n/a 5.8 16  

Quad-

Core 

Servers

OP 553.0 71.4  0.0 n/a 5.7 

PR 1362.6  82.4  24.84 12.1 24.2 PR 368.6 81.0  19.9 11.9 25.2 

PT 1551.2  80.0  36.59 n/a 8.1 PT 436.7 77.4  26.92 n/a 8.0 

PP20 3040.6  60.7  0.41 12.1 24.7 PP20 862.6 55.4  0.16 12.1 26.6 

512 

Single- 

Core 

Servers 

OP 15619.0  74.8  0.0 n/a 5.8 128 

Quad-

Core 

Servers

OP 3948.1 74.5  0.0 n/a 5.8 

PR 11528.6  81.4  20.6 12.0 28.2 PR 2804.0 81.9  22.59 12.2 25.8 

PT 11965.0  80.7  40.06 n/a 8.1 PT 3051.4 80.3  39.76 n/a 8.1 

PP20 22449.6  63.8  0.79 12.0 28.5 PP20 5990.0 61.3  0.49 12.1 25.6 

 

the energy reduction rate and the drop rate in the simula-
tions. The reduction rate is always directly proportional to
the drop rate, except for OP, where the drop rate is main-
tained at 0%. OP is optimal, but infeasible, since it seems
that there is no way to exactly know in advance the future
workload. In OP, a significant energy consumption reduc-
tion rate can be achieved, up to 74.8% on NASA and 73.4%
on ClarkNet, compared to the conventional NM, without af-
fecting performance as the drop rate is 0% in either case.
One of the major drawbacks of this OP is the short ON/OFF
period; one server is required to change its status approxi-
mately every 5-6 minutes on average.

In contrast, PR and PT are feasible because they ap-
ply a prediction mechanism to historical loads for predict-
ing future loads, and then make decisions based on them.
PR apparently is of a much higher standard than PT in terms
of reduction rate, drop rate and ON/OFF period. While the
difference in reduction rates between them is quite small,
the drop rates of PR are much lower than those of PT, ap-
proximately 1/3 in the cases of 64 single-core servers and
128 quad-core servers with ClarkNet, and 1/2 in most of
other cases. This verifies the advantage of the neural pre-
dictor over the competitor. The downside is that it must be
trained every 12-13 minutes. On the other hand, servers in
PR need to change status every 25 minutes with NASA and
15 minutes with ClarkNet, as opposed to 8 minutes in PT.
In general, PR saves most energy: up to 82.4% on NASA
with 64 single-core servers, and 79% on ClarkNet with 512
single-core servers. However, the cost is quite high, as the
best drop rates it can offer are as much as 19.9% and 8.37%
on NASA and ClarkNet, respectively.

Among the prediction modes, PP20 eclipses the others
by proving to be able to provide low drop rates with high
energy reduction rates. Obviously, the provisioning of ad-
ditional servers helps to greatly reduce the drop rate. In the
case of 16 quad-core servers with approximately 20%= 4
additional servers, it provides a drop rate of 0.16%, and an

energy reduction rate of 55.4% on NASA, and a drop rate
of 0.02% with a reduction rate of 49.8% on ClarkNet. It is
expected that the drop rate can be reduced further, to a near-
zero level, provided that more additional servers are added.
Similar to PR, this mode requires its neural predictor to un-
dergo training every 12-13 minutes. The ON/OFF periods in
PP20 are the longest: 26 minutes on NASA and 15 minutes
on ClarkNet. As a result, PP20 is the most practical mode
in real-world systems.

In addition, larger datacenters are likely to yield larger
potential relative energy savings because dynamic resizing
of the datacenter may take place on a finer granularity to
more correctly approximate the load curve. For example,
the energy reduction rates of OP on NASA are 74.1% and
74.8% on 64 and 512 single-core servers, respectively. Sim-
ilar results on ClarkNet: 70.5% and 73.1% (energy reduc-
tion rate) on 16 and 128 quad-core servers.

Finer granularity in dynamic datacenter resizing is also
gained by a fewer number of cores in a server. The num-
ber of cores tends to be inversely proportional to the reduc-
tion rate: the fewer cores the server has, the higher the en-
ergy reduction rate is. Nevertheless, the difference becomes
trivial with a high number of servers. On NASA with OP,
for instance, the reduction rate is 74.1% in the case of 64
single-core servers, as against 71.4% in the case of 16 quad-
core servers, but it stands at 74.8% and 74.5%, not much
difference, in the cases of the 512 single-core and 128 quad-
core servers. This tendency also appears on ClarkNet, where
a difference of 2.2% in the reduction rates in cases of 64
single-core servers and 16 quad-core servers decreases to
only 0.3% in the cases of 512 single-core servers and 128
quad-core servers.

Finally, the results suggest that the performance on
ClarkNet is higher than that on NASA in all cases. This
outcome is perhaps due to a higher level of self-similarity of
the ClarkNet load trace, which leads to more accurate pre-
dictions. This again asserts the strong influence of workload
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Table 3 Performance on ClarkNet with the best of each case displayed in boldface.

Data- 

center 
Mode 

Energy  

(MJ) 

Reduction 

Rate (%)

Drop Rate 

(%) 

Training 

Period 

(minute)

ON/OFF 

Period 

(minute) 

Data-

center
Mode

Energy 

(MJ) 

Reduction 

Rate (%) 

Drop Rate 

(%) 

Training 

Period 

(minute) 

ON/OFF 

Period 

(minute)

64  

Single- 

Core 

Servers 

OP 1481.0  72.7  0.0 n/a 6.1 16  

Quad-

Core 

Servers

OP 400.0 70.5  0.0 n/a 6.1 

PR 1264.3  76.7  8.37 13.1 15.4 PR 315.7 76.7  9.55 13.5 15.8 

PT 1251.4  76.9  26.08 n/a 7.9 PT 343.1 74.7  18.96 n/a 7.9 

PP20 2284.6  57.8  0.14 13.4 15.6 PP20 680.0 49.8  0.02 13.1 15.0 

512 

Single- 

Core 

Servers 

OP 11550.2  73.4  0.0 n/a 6.1 128 

Quad-

Core 

Servers

OP 2918.5 73.1  0.0 n/a 6.1 

PR 9119.2  79.0  15.3 13.5 15.8 PR 2509.6 76.8  8.7 13.3 13.2 

PT 9717.1  77.6  28.8 n/a 7.8 PT 2517.1 76.8  25.74 n/a 7.6 

PP20 17269.9  60.2  0.21 13.5 16.0 PP20 4519.1 58.3  0.12 13.6 14.0 

 

characteristics on the prediction accuracy and eventually on
the overall performance of the system.

5. Related Work

Many papers have studied the dynamic voltage/frequency
scaling technique for managing energy and server resources
in clusters and data/hosting centers [11]–[13]. The work
in [11] has mainly focused on a single server setting, and
its energy consumption is reduced by adaptive algorithms
for frequency scaling. In [12], a cluster-level power con-
troller has been proposed, although the actual energy reduc-
tion is gained at processor level, also by adjusting their fre-
quency. An interesting work was introduced in [13] to find
the specific relationship between power and frequency for
optimal power allocation at the level of server farms. Even
though frequency scaling technique offers substantial power
savings, it relies on the settings of hardware components to
perform scaling tasks.

A recent trend is to define special states of servers,
which can provide energy savings while being able to per-
form some pre-defined tasks. In [14], PowerNap was pro-
posed as an approach to energy conservation, where the
server moves rapidly between an active state and a near-
zero-power idle state, called “nap” state, in response to load.
Another special state of server, called “Somniloquy”, was
presented in [15] to augment network interfaces and enable
a server to respond to network traffic such as remote desktop
and VoIP in the S3 state for saving energy. [16] introduced
a similar barely-alive state, that allows remote access to a
server’s main memory even when many of its other compo-
nents have been turned off. This approach has a downside,
however, as it requires additional specially-designed hard-
ware to implement the special state.

We believe that a software-based approach that takes
advantage of currently available servers’ states would be
more cost-efficient and easier for datacenter deployment. In

that regard, workload concentration and temporary server
turnoff promise the most power savings. A power aware re-
quest distribution scheme for server clusters was introduced
in [17], where energy reduction is obtained by turning off
some servers when the current load can be served by fewer
servers. Health et al. [18] designed servers for a hetero-
geneous cluster that employs modeling and optimization to
minimize energy consumption. Recently, the energy-aware
consolidation problem for Clouds was investigated in [19] to
show the performance-energy trade-offs and the existence of
an optimal point. In this paper, we design a Green Sched-
uler that also concentrates workload on a subset of servers
and then turns off the others. In contrast with previous work,
we employ a neural predictor for predicting user demand
in turning on/off servers, considering the predicted demand
and servers’ restart delay, as well as the ability to dynami-
cally adapt to workload changes over time.

6. Conclusion

This paper has presented a Green Scheduler for energy sav-
ings in Cloud computing. It is composed of four algorithms:
prediction, turning ON/OFF, task scheduling, and evaluation
algorithms. We use a neural predictor in the prediction algo-
rithm to predict aggregate request load, based on which the
ON/OFF algorithm computes the number of active servers
needed to process the load. The task scheduling algorithm
then directs request traffic away from powered-down servers
and toward active servers. The performance is evaluated and
monitored by the evaluation algorithm to ensure the ability
of the scheduler to adapt to load changes over time. In order
to demonstrate its efficacy, we have performed simulations
with different parameters and running modes. From the re-
sults, we have concluded the best configuration is the predic-
tion mode with a combination of dynamic training and dy-
namic provisioning of 20% additional servers to assure ser-
vice level agreement. It can offer 49.8% energy consump-
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tion reduction, while maintaining the drop rate at as low as
0.02% on ClarkNet, and an energy reduction of 55.4% with
a drop rate of only 0.16% on NASA.

In future work, we plan to extend the system model to
deal with a greater diversity of workloads and application
services, as well as architectures of datacenters, for a better
simulation of cloud environments. Another plan is to com-
pare our scheduler with other power management schemes
which employ different load prediction mechanisms. A de-
ployment of the scheduler to show its efficiency in real-
world datacenters is also worth considering.
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