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The capability to predict the host load of a system is significant for computational grids
to make efficient use of shared resources. This work attempts to improve the accuracy
of host load predictions by applying a neural network predictor to reach the goal of best
performance and load balance. We describe the feasibility of the proposed predictor in
a dynamic environment, and perform experimental evaluation using collected load
traces. The results show that the neural network achieves consistent performance
improvement with surprisingly low overhead in most cases. Compared with the best
previously proposed method, our typical 20:10:1 network reduces the mean of
prediction errors by approximately up to 79%. The training and testing time is
extremely low, as this network needs only a couple of seconds to be trained with more
than 100,000 samples, in order to make tens of thousands of accurate predictions within
just a second.
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1. Introduction

Grid computing [1] is designed to meet the needs of performing large numbers of complex

computations by aggregating heterogeneous resources located in different places over a

network using open standards. In order to achieve the best performance in such an open

and highly dynamic computing environment, efficient task scheduling is essential in

choosing which collection of distributed resources to use [2,3]. Also, by using mechanisms

such as CORBA [4], Java RMI [5] and emerging GridRPC [6], a task can be scheduled to

execute on any of the Grid nodes. Obviously, choosing a node would become much easier

if the scheduler could know the task’s running time on the nodes beforehand.

In fact, the running time of a task, which varies as a result of CPU availability, is

directly related to the average host load. The running time was found to be almost linearly

correlated with the correspondingly measured host load during execution [7]. As a result,

the running time can be determined by predicting the host load of the system.

Fortunately, the host load is discovered to be consistently predictable to a very useful

degree from historical data and self-similarity [8]. There have been many efforts to make

reliable host load predictions from load history, ranging from traditional linear models

[9,10] to recently proposed tendency-based models [11,12]. Nonetheless, such predictions

ISSN 1744-5760 print/ISSN 1744-5779 online

q 2010 Taylor & Francis

DOI: 10.1080/17445760.2010.481786

http://www.informaworld.com

*Corresponding author. Email: duytvt@jaist.ac.jp

International Journal of Parallel, Emergent and Distributed Systems

iFirst article, 2010, 1–16

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
D
u
y
,
 
T
r
u
o
n
g
 
V
i
n
h
 
T
r
u
o
n
g
]
 
A
t
:
 
0
5
:
2
0
 
1
9
 
D
e
c
e
m
b
e
r
 
2
0
1
0



are unlikely to be accurate due to their limitations in capturing all the underlying features

of the host load history and the dynamic nature of Grid computing systems.

In this work, we aim to address the following three issues by applying artificial neural

networks (ANNs) to the task of host load prediction. First, we discuss whether neural

networks produce more accurate results than previously proposed linear models and

tendency-based models in this context. Second, we consider the cost, namely the cost for

training, validating and testing, to generate such good predictions. Finally, and most

importantly, we examine whether an ANN-based solution is applicable in dynamic real-

time settings, such as computational grids facing trade-offs between benefits and expenses.

We perform experimental evaluation and show that the neural network predictor

achieves consistent improvement over the competitors in predicting future load values.

After being trained for only a couple of seconds with all the load traces collected over

10 days, our simple 20:10:1 network is able to predict load values over the next 10 days

with very low mean prediction errors, and without the need of being trained again. The

time required for producing thousands of predicted load values is also just within a second,

almost the same as other methods. The results strongly support the feasibility of bringing a

neural predictor to real-world scheduling systems to exploit its accurate prediction ability

with surprisingly low overhead.

The remaining parts of this work are organised as follows. Section 2 introduces

background and related work. The neural network predictor is detailed in Section 3.

Section 4 analyses experimental results when our neural predictor is applied to actual

measurements and compared to results of other previous work. Finally, we conclude our

study in Section 5.

2. Related work

Perhaps the most influential research on prediction-based real-time systems for distributed

interactive applications is the work by Dinda et al. [7,8]. In [7], the authors improved the

understanding of how host load changes over time by collecting the traces of Digital Unix,

which uses a 5-s exponential average, on over 35 different machines. By analysing the

traces, they found that loads exhibit a high degree of self-similarity, with Hurst parameters

ranging from 0.73 to 0.99, and that loads display epochal behaviour, with the local

frequency content of the load signal remaining quite stable for long periods.

After that they presented a study on the performance of different linear models for host

load prediction based on these load traces [8]. Multiple linear models, including AR, MA,

ARMA, ARIMA and ARFIMA models were rigorously evaluated. The main conclusions

were that load is consistently predictable to a very useful degree, and that the simple AR

model is the best model of this class, due to its relatively good prediction ability and low

overhead. However, these linear models themselves are limited, and may not be able to

capture some kinds of nonlinear behaviour in the host loads.

Another more accurate approach uses tendency-based prediction techniques [11,12].

Generally, these techniques assume that if the current value increases, the next value will

also increase, and vice versa. In [11], Yang et al. proposed a number of one-step-ahead

prediction strategies that give more weight to more recent measurements than to other

historical data, while paying attention to different behaviours when ‘ascending’ and

‘descending’. One better strategy based on tendency with several backward steps was

introduced by Zhang et al. in [12], using polynomial fitting method to produce the

prediction values. Although these models generally perform well, they have a glaring error

source, committing great errors when the time series changes its direction.

T.V.T. Duy et al.2
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We believe ANNs are able to overcome those limitations. They have many important

advantages over the traditional statistical models, most notably nonlinear generalisation

ability [13]. With this remarkable ability, they can learn from data examples and capture

the underlying functional relationships between input and output values. Neural networks

have been applied to modelling nonlinear time series in various areas, for example, stock

market [14], sports results [15], road surface temperature [16], seasonal time series [17],

quarterly time series [18] and even scheduling problems [19].

In [19], a NARX neural network-based load prediction was presented to define data

mappings appropriate for dynamic resources, with the aim of improving scheduling

decisions in grid environments. There are three major differences between the approach of

Huang et al. and our approach. First, their method utilised a recurrent network while our

method employs feed forward networks for the purpose of ensuring both high performance

and low overhead. Second, and more important, their work, as well as other previous

works, merely focused on performance, in particular the execution time of applications

running using the proposed scheduling method. Our novelty here, which is an important

difference, is that we not only improve the performance, but we also consider the cost,

namely the cost for training, validating and testing, to examine if such a neural network-

based solution is feasible in dynamic real-time settings. This is very important because the

solution may not be applicable in real time if it takes hours or days for training. Third, their

experiments were simply carried out with only one network architecture, a constant

learning rate of 0.2 and 20min of the load trace, whereas we used combinations of

different architectures and learning rates with four load traces collected over tens of days.

3. Host load prediction with ANNs

3.1 An overview of ANNs

ANN, originally developed to mimic biological neural networks, is a computational model

composed of a large number of highly interconnected simple processing elements called

neurons or nodes. Each node receives input signals generated from other nodes or external

inputs, processes them locally through an activation function and produces an output

signal to other nodes or external outputs. Given a training set of data, the ANN can learn

the data with a learning algorithm, and form a mapping between inputs and desired outputs

from the training set through learning. After the learning process has finished, it is able to

understand the hidden dependencies between the inputs and outputs and generalise to data

never before seen.

In this work, multilayer feedforward network [20], accompanied by backpropagation,

which is the most widely used training algorithm for multilayer networks, is chosen for

predicting the host loads. It has been applied in a variety of problems, especially in the

field of prediction, because of its inherent capability of arbitrary input–output mapping.

More importantly, simplicity and fast convergence ability make it feasible for deployment

in a real-time dynamic setting. Also, the availability of host load traces meets the needs of

the multilayer feedforward network for input and output data.

3.2 Feedforward neural networks

Figure 1 depicts an example of a feedforward neural network in operation with a host load

time series. The network has four network inputs where external information is received,

and one output layer C with one node where the solution is obtained. The network inputs

and the output layer are separated by two hidden layers: layer A with four nodes, and layer

International Journal of Parallel, Emergent and Distributed Systems 3
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B with three nodes. The connections between the nodes indicate the flow of information

from one node to the next, i.e. from left to right.

Each node has the same number of inputs as the number of nodes in the preceding

layer. Also shown in Figure 1, each connection is modified by a weight, and each node has

an extra input assumed to have a constant value of 1. The weight that modifies this extra

input is called the bias.

When the network is run, each node in the hidden layers and the output layer performs

the calculation in Equation (1) on its input, and transfers the result Oc to the next layer.

Oc ¼ h
Xn
i¼1

xc;iwc;i þ bc

 !
where hðxÞ ¼

1
1þe2x if hidden layer node

x if output layer node

( )
; ð1Þ

where Oc is the output of the current node, n is the number of nodes in the previous layer,

xc,i is an input to the current node from the previous layer, wc,i is the weight modifying the

corresponding connection from xc,i, and bc is the bias. In addition, h(x) is either a sigmoid

activation function for hidden layer nodes, or a linear activation function for the output

layer nodes.

3.3 Backpropagation training

In order to make meaningful predictions, the neural network needs to be trained on an

appropriate data set. Basically, training is a process of determining the connection weights

in the network. Examples of training data sets are in the form of , input vector, output

vector . where input vector and output vector are equal in size to the number of network

inputs and outputs, respectively. Then, for each example, the backpropagation training

process involves the following steps.

Figure 1. A three-layer feedforward network.

T.V.T. Duy et al.4
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Step 1: An input vector is fed to the network inputs and the network is run: Equation

(1) is computed sequentially forward from left to right until eventually the network output

activation values are found.

Step 2: The error term for the output layer nodes, i.e., the difference between the

desired output Dc (the output vector) and the actual network output Oc, is computed with

Equation (2):

dc ¼ Dc 2 Oc: ð2Þ

Then, these errors are propagated sequentially backward from right to left to calculate

errors for hidden layer nodes based on Equation (3):

dc ¼ Ocð12 OcÞ
Xn
i¼1

diwi;c; ð3Þ

where Oc is the output of the current hidden layer node, n is the number of nodes in the

next layer, di is the error for a node in the next layer and wi,c is the weight modifying the

corresponding connection from the current node to that node.

Step 3: For each connection, the change in the weight modifying the connection from

node c to node p is computed using Equation (4) and added to the weight.

DWc;p ¼ adcOp; ð4Þ

where a is the learning rate of the network, dc is the error of node c and Op is the output of

node p. The learning rate controls how quickly and how finely the network converges to a

solution. The network was trained with different learning rate values ranging from 0.01 to

0.3 in our experiments.

After the training process has been performed for every example of the training data

set, one epoch occurs. The final goal is to find the weights that minimise a certain overall

error measure, such as the sum of squared errors or mean squared errors. We evaluate the

accuracy of our predictions using the widely used normalised mean squared errors

(NMSE) defined as follows:

NMSE ¼
1

s2N

XN
i¼1

ðOi 2 DiÞ
2; ð5Þ

where s 2 is the variance of the time series in the period with N examples andOi andDi are,

respectively, the predicted and the desired outputs at time i.

4. Experimental evaluation

4.1 Input parameters

A neural predictor was developed with the aim of evaluating performance of neural

network in host load prediction. Even though there are many neural network applications

freely and commercially available, we developed our own program to customise and

extend various features and parameters using Microsoft Visual Studio Cþþ6.0.

Moreover, we believe that development is the best way to gain a deep understanding of its

internal operation.

A number of experiments were conducted with several input parameters. A

challenging parameter that must be identified before running is the appropriate network
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architecture, i.e. the number of hidden layers and the number of nodes for each layer.

Unfortunately, there is no rule for choosing exact numbers in neural networks. In this

work, we followed the trial-and-error method for obtaining knowledge about a network

architecture, which could promise both high performance and low overhead.

The trial-and-error process proceeded as follows. First, we tested the networks with

several numbers of hidden layers. The more hidden layers there were, the longer time it

usually took for training, which may last hours in the case of three or more hidden layers.

We came to a conclusion that two hidden layers would probably meet the requirements.

After deciding to stick to two-hidden-layer-architecture, we started to figure out suitable

numbers of inputs. The networks were tested with a wide range of inputs, from a few to

thousands of inputs. The outcome showed that hundreds of inputs would result in hours of

training, too long to fit a dynamic environment. However, less than 10 inputs were deemed

insufficient to produce good results. Lastly, the number of output layer nodes was the

easiest, since it is necessarily one. Therefore, the networks that were tested are 20:10:1,

30:10:1, 50:20:1 and 60:30:1. Another important parameter is the value of learning rate. In

the experiments, we evaluated each of these networks with learning rates valued at 0.01,

0.05, 0.1, 0.2 and 0.3.

Once the network parameters were determined, we were able to feed the data series to

the networks for evaluation. The time series we chose here are the four most interesting

load traces: axp0, axp7, sahara and themis in a number of load traces on Unix systems

collected by Dinda [21]. The load is the number of processes that are running or are ready

to run, which is the length of the ready queue maintained by the scheduler. The kernel

samples the length of the ready queue at some rate, and averages a number of previous

samples to produce a load average which can be captured by a user program. These four

load traces represent diversity both in capture periods and machine types, as shown

in Table 1.

In addition, the load traces have to be normalised to a suitable range of values because

the sigmoid activation function h(x) has output of the range [0, 1]. Also, normalisation

tends to make the training process better by improving the numerical condition and

ensuring that various default values involved in initialisation and termination are

appropriate. There are several different ways to normalise the network inputs well suited

to different ranges of input values and applications. By observing the means and

standard deviations (SDs) of the load traces, we confirmed that all of the load traces are

positive and most of them are distributed over an interval of [0, 1]. Hence, rescaling

these values to a range of [0.1, 0.9] is expected to maintain the original conditions and does

not discard much information. The following normalisation formula is applied to every x in

Table 1. Descriptions of four load traces.

Name Description Collected load traces Mean SD

axp0 Heavily loaded, highly variable
interactive machine

1,296,000 (in 75 days) 1 0.54

axp7 Lightly loaded batch machine 1,123,200 (in 65 days) 0.12 0.14
sahara Moderately loaded, big memory

computing server
345,600 (in 20 days) 0.22 0.33

themis Moderately loaded desktop machine 345,600 (in 20 days) 0.49 0.5

T.V.T. Duy et al.6
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each load trace:

xi ¼ LWBþ
xi 2 xmin

xmax 2 xmin

ðUPB2 LWBÞ; ð6Þ

where xmax and xmin are the maximum and minimum value of the load trace, LWB is the

lower bound and UPB is the upper bound of the interval [0.1, 0.9]. The four normalised

load traces are presented in Figure 2.

Finally, each normalised load trace is divided into three sets: learning set, validating

set and testing set, and each accounts for a percentage of 50, 30 and 20% of the total

number of traces, respectively, as detailed in Table 2. The learning set is fed to the neural

networks to fit their connection weights during the learning process. The NMSE is

measured using the validating set and used to validate whether to finish the learning

process or not. If the current error is 20% higher than the minimum error, the

backpropagation training process will be stopped and weights shall be restored to the

previous values. The last set, the testing set, is then used for assessing the performance of

the neural networks.

4.2 Host load prediction results

Figure 3 shows the first experimental results, the NMSE of the prediction errors for those

four testing sets with four different network architectures and five different values for

Figure 2. The normalised load traces.

International Journal of Parallel, Emergent and Distributed Systems 7

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
D
u
y
,
 
T
r
u
o
n
g
 
V
i
n
h
 
T
r
u
o
n
g
]
 
A
t
:
 
0
5
:
2
0
 
1
9
 
D
e
c
e
m
b
e
r
 
2
0
1
0



learning rate. The prediction error for each load value in the testing set is calculated using

the following equation:

prediction error ¼
1

N

XN
i¼1

jOi 2 Dij

Di

£ 100%; ð7Þ

where N is the number of load values in the testing set and Oi and Di are the predicted and

the actual values at the ith trace, respectively.

Table 2. Load trace partitioning.

Name Training set Validating set Testing set Total

axp0 648,000 388,800 259,200 1,296,000
axp7 561,600 336,960 224,640 1,123,200
sahara 172,800 103,680 69,120 345,600
themis 172,800 103,680 69,120 345,600

Figure 3. NMSE of the prediction errors.

T.V.T. Duy et al.8
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As can be seen from the charts, NMSE has values in the range [3.4%, 3.9%] in axp0,

[3.8%, 5.1%] in axp7, [3.5%, 7.5%] in sahara and [0.7%, 1.2%] in themis. Such low values

of these error terms imply that the neural network has successfully captured hidden

behaviour of the host load and made highly accurate predictions. We find that no

combination of learning rate and network architecture is the best for all the load traces, as

values of NMSE keep changing with the changes in learning rate and network architecture,

although the variation is quite small. However, the learning rate of 0.3 appears to play an

important role in generating the lowest values of NMSE, in other words, the most accurate

results. On three out of the four load traces, the networks of 60:30:1, 20:10:1, 50:20:1 and

the learning rate of 0.3 produce the best values of NMSE on axp0, axp7 and sahara,

respectively. The only exception is themis, where the network of 20:10:1 with the learning

rate of 0.01 shows the best performance. As a result, the learning rate of 0.3 can be a good

candidate for solutions aimed at high prediction accuracy.

Another significant factor that directly affects prediction accuracy is the shape of the

load traces. The range of NMSE on themis is the smallest, while this range on sahara is the

largest. In the middle range are the ranges of NMSE on axp0 and axp7. If we look back at

Figure 2 and Table 2 for the shapes and partitioning of the load traces, we can easily

recognise that the testing set of themis is actually repeated as one part of the training set,

though they are not exactly the same. This repetition makes it easier for the neural network

to predict the values which it has been trained with and results in the highest accuracy. In

contrast, the testing set of sahara has some special patterns that can be found nowhere in

the training set. This lack of repeating patterns causes a slightly lower degree of prediction

accuracy on sahara. However, the situation can be improved considerably, providing we

increase the size of the training set so that it covers non-repeating patterns of the

corresponding testing set. These results once again have proved a strong relationship

between the degree of self-similarity exhibited in the load traces and the degree of

prediction accuracy.

Similar results are obtained with the mean and SD of the prediction errors, as displayed

in Table 3. The mean has values in the range [2.6–3.2%] in axp0, [1.1–1.8%] in axp7,

[5.5–12.8%] in sahara and [1.6–3.7%] in themis. Likewise, SD has values in the range

[5.1–5.7%] in axp0, [4.8–5.2%] in axp7, [7.8–8.5%] in sahara and [2.5–3.3%] in themis.

The choices of learning rate and network architecture, again, do not affect the variation,

since it is quite small.

The learning rate and network architecture have a significant impact on the networks’

training time, as shown in Table 4. With the same training set and the same network

architecture, the lowest learning rate of 0.01 always results in the longest times, while the

highest learning rate of 0.3 is involved in most cases with the shortest times. Similarly, it is

easy to see that with the same training set and learning rate, there is usually a connection

between cases with the longest times and the largest network architecture of 60:30:1. In

contrast, the smallest network architecture, 20:10:1, proves to contribute substantially to

time reduction in most cases linked to the shortest times, when the learning rate is kept

unchanged in the same training set. Hence, a mixture of learning rate of 0.3 and network

architecture of 20:10:1 can be the most efficient choice for reduction in training time.

We also note that the size of training set obviously has a strong effect on the time

needed to train the networks. The training time sharply increases from only a couple of

seconds to several days as the size of the training set is increased. For example, the size of

training set ranges from 172,800 (sahara and themis) to 648,000 (axp0), as shown in

Table 2. Selection of the training set size is a trade-off between accuracy and time; a

training set which is too large takes the network a long time to complete, while a very
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small set is inadequate to get a complete picture of the load traces. The outcome suggests

that a training size of about 100,000, equivalent to the amount of load over 5 days, is

reasonable to make it possible for the network to quickly respond with correct solutions in

dynamic real-time grid environments.

Unlike the training time, which heavily depends on the network architecture and

learning rate, the validating and testing times behave in a different way and remain fairly

stable. Figure 4 shows the average validating and testing time for each load trace in

proportion to the network architecture, since the learning rate has almost no effect. The

bigger the data set is, the longer the validating and testing time is. The lines representing

sahara and themis nearly overlap each other owing to use of the same size data set. With

the same set, larger network architecture causes a larger increase in the validating and

Table 4. Training time in seconds.

Name
Learning rate

0.01 0.05 0.1 0.2 0.3

20:10:1axp0 725,681 68,548 49,436 26,880 18,641
30:10:1axp0 589,741 89,564 48,653 65,483 15,867
50:20:1axp0 1,356,874 75,648 85,671 20,458 21,534
60:30:1axp0 1,132,568 86,579 84,567 38,956 17,589
20:10:1axp7 163,102 9510 7402 2490 2492
30:10:1axp7 67,728 9657 5756 5363 578
50:20:1axp7 218,219 8182 1238 1199 1203
60:30:1axp7 235,868 6408 6420 4181 4185
20:10:1sahara 80 20 30 14 10
30:10:1sahara 183 43 26 14 9
50:20:1sahara 248 56 42 109 68
60:30:1sahara 223 48 48 71 71
20:10:1themis 16,752 56 57 6 7
30:10:1themis 21,431 95 56 14 14
50:20:1themis 1036 207 207 235 82
60:30:1themis 130,086 1027 1033 464 218

Figure 4. Validating and testing time.
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testing times. However, in general this time is trivial compared with the training time. In

the cases of sahara and themis, for instance, the predicted results for about 70,000 future

load values can be obtained within a second.

4.3 Performance comparison

We compare the performance of the neural predictor with that of two previously proposed

prediction methods in terms of mean and SD of the prediction errors. Based on our

experimental results in the previous section, we selected the networks of 20:10:1 and

30:10:1, both with the same learning rate of 0.3, which provide both high degree of

prediction accuracy and short training time. Their performances are compared to those

taken from the previously published papers. One method (Yang et al.) is a tendency-based

strategy which has been proven to outperform the widely used NWS method [11]. The

other (Zhang et al.) is also based on tendency observation of the load traces proposed by

Zhang et al. in [12]. This approach predicts the future load using a polynomial fitting

method on several past load values and previous similar patterns. At the time of making

this performance comparison, it was still the best performer in host load prediction.

Table 5 displays the results of performance comparison, with the best for each case

displayed in bold face. The methods were evaluated with all the load traces, with the

amount of data ranging from 1 day to the total available amount of collected traces.

We note that the neural network has achieved consistent improvement over the

competitors in predicting future load values of the load traces in most cases due to its

nonlinear generalisation, which is eminently suitable for capturing nonlinear behaviour in

the host loads. Also, the neural predictor tends to produce more accurate results, provided

there are more data in the data sets, mainly because of better training. For all the load

traces, most of the best results are included in the total available amount of collected traces

with both networks. This observation, however, does not appear in other methods, as they

merely look ahead only one step based on the current tendency of data. They seem to

usually commit a high degree of errors when the tendency changes direction.

On axp0 and sahara, both networks of 20:10:1 and 30:10:1 always outclass the other

methods in all cases. The neural predictor reduces the average prediction error rate by

approximately 4 to 72% on axp0 while on sahara it can predict up to 45% more accurately

than the Zhang method. On axp7 where both the Yang and the Zhang methods were

especially effective, except for the case of 10 days where the network of 30:10:1 cuts SD

by half but is about 33% worse than the Zhang method in terms of mean, both neural

networks perform better, with prediction error reduction ratio ranging from 25 to 59% for

all other cases. Lastly, the 30:10:1 network, again, suffers low degrees of prediction

accuracy for cases of 1 day, 5 days and 10 days on themis, but eventually improves greatly

in other cases to achieve the best reduction ratio from 31 to 79%. Overall, the 20:10:1

network is superior to other methods in all cases (100%), and the 30:10:1 network is better

than other methods in 18/22 cases (82%).

4.4 Performance with load traces collected on contemporary systems

So far we have used the load traces by Dinda, which are increasingly obsolete, and hence,

experiments on contemporary systems are required to confirm if there exist any

differences from those load traces. In this section, we validate the efficacy of our method

with load traces collected on more modern systems [22]. As shown in Figure 5,

abyss.cs.uchicago.edu has very low CPU load with mean and SD equal to 0.08 and 0.18,

T.V.T. Duy et al.12
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respectively. Meanwhile, mystere.ucsd.edu has a mean of 0.4, divided into two parts and

SDs are 0.08 and 0.15 for each part. Both have the same size of 10,000 samples, quite

small compared to those by Dinda but good enough for our validation.

We ran several experiments to evaluate the selected networks of 20:10:1 and 30:10:1

with a constant learning rate of 0.3 on these two load traces, along with axp0 as the

representative of Dinda’s load traces, for cases of 10,000 and 5000 samples. The

experimental results are shown in Table 6, with the best for each case displayed in bold

face, where abyss and mystere stand for abyss.cs.uchicago.edu and mystere.ucsd.edu,

respectively. As expected, both networks have exhibited high prediction accuracy and low

overhead with not much difference between the new traces and the older ones. NMSE is

maintained in the range of [1.53–7.56%] and the training time is virtually only a few

seconds. The longest time needed for training is 56 s for 10,000 samples on abyss. The

results strongly encourage feasibility of applying the neural predictor in a wide variety of

computing resources. No matter how modern the computing systems are, their load traces

basically share similar characteristics which the neural networks can capitalise on to

predict their future load.

5. Conclusion

In this work, we have studied the performance and cost of a neural network predictor by

applying it to load trace analysis in the area of host load prediction. Experimental

evaluation has shown that the neural network consistently improves performance

compared with previously proposed linear models and tendency-based models on the load

traces in most cases. For example, the 20:10:1 network with a learning rate of 0.3 always

outperforms the method which remained the best until the time of writing, by reducing the

mean of the prediction error by up to 79%. The cost, particularly the training time, is

extremely low, as this network needs only a few seconds to be trained with more than

100,000 samples, and then makes tens of thousands of accurate predictions within a

second.

The prediction ability and low overhead convincingly demonstrate application

feasibility of the neural predictor in dynamic computing environments such as

computational grids and clouds. Inspired by these positive signals, we are now in the

process of integrating the neural predictor into a real-time scheduler in a GridRPC

computing system using NetSolve and GridSolve. We also plan to improve efficiency in

Figure 5. The load traces collected on more modern systems.
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other areas beyond the area of host load predictions, for instance, in relation to network

traffic and latency, etc.
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