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Abstract 

 
The capability to predict the host load of a system is 

significant for computational grids to make efficient 
use of shared resources. This paper attempts to 
improve the accuracy of host load predictions by 
applying a neural network predictor to reach the goal 
of best performance and load balance. We describe 
feasibility of the proposed predictor in a dynamic 
environment, and perform experimental evaluation 
using collected load traces. The results show that the 
neural network achieves a consistent performance 
improvement with surprisingly low overhead. 
Compared with the best previously proposed method, 
the typical 20:10:1 network reduces the mean and 
standard deviation of the prediction errors by 
approximately 60% and 70%, respectively. The 
training and testing time is extremely low, as this 
network needs only a couple of seconds to be trained 
with more than 100,000 samples in order to make tens 
of thousands of accurate predictions within just a 
second.  
 
 
1. Introduction 
 

Grid computing [1] is designed to meet the needs of 
performing large numbers of complex computations by 
aggregating heterogeneous resources located in 
different places over a network using open standards. 
In order to achieve the best performance in such an 
open and highly dynamic computing environment, 
efficient task scheduling is essential to choose which 
collection of distributed resources to use [2,3]. Also, 
by using mechanisms such as CORBA [4], Java RMI 
[5], and emerging GridRPC [6], a task can be 
scheduled to execute on any of the Grid nodes. 

Obviously, choosing a node would become much 
easier if the scheduler could know the task’s running 
time on the nodes beforehand.  

In fact, the running time of a task, which varies as a 
result of CPU availability, is directly related to the 
average host load. The running time was pointed out to 
be almost linear to the correspondingly measured host 
load during execution [7].  As a result, the running 
time can be determined by predicting the host load of 
the system.  

Fortunately, the host load is discovered to be 
consistently predictable to a very useful degree from 
historical data and self-similarity [8]. There have been 
many efforts to make reliable host load predictions 
from load history, ranging from traditional linear 
models [9,10] to recently proposed tendency-based 
models [11,12]. Nonetheless, such predictions are 
unlikely to be accurate due to their limitations in 
capturing all the underlying features of the host load 
history and the dynamic nature of Grid computing 
systems. 

In this paper, we aim to address the following three 
issues by applying artificial neural networks to the task 
of host load prediction. First, we discuss whether 
neural networks produce more accurate results than 
previously proposed linear models and tendency-based 
models in this context. Second, we consider the cost, 
namely the cost for training, validating and testing, to 
generate such good predictions. Finally, and most 
importantly, we examine if an artificial neural network 
based solution is applicable in a dynamic real-time 
setting, such as computational grids facing a tradeoff 
between benefits and expenses.  

We perform experimental evaluation and show that 
the neural network predictor achieves a consistent 
improvement over the competitors in predicting future 
load values. Once being trained for only a couple of 



seconds with all the load traces collected over 10 days, 
the simple 20:10:1 network is able to predict load 
values over the next 10 days with very low mean 
prediction errors, and without the need of being trained 
again. The time required for producing thousands of 
predicted load values is also just within a second, 
almost the same as other methods. The results strongly 
support the feasibility of bringing a neural predictor to 
real world scheduling systems to exploit its accurate 
prediction ability with surprisingly low overhead.  

The remaining parts of this paper are organized as 
follows. Section 2 introduces background and related 
work. The neural network predictor is detailed in 
Section 3. Section 4 analyzes experimental results 
when our neural predictor is applied to actual 
measurements and compared to results of other 
previous work. Finally, we conclude our study in 
Section 5. 
 
2. Related work 
 

Perhaps the most influential research on prediction-
based real-time systems for distributed interactive 
applications is the work by P. Dinda et al. [7,8]. In [7], 
the authors improved understanding of how host load 
changes over time by collecting the traces of the 
Digital Unix 5 second exponential load average on 
over 35 different machines. By analyzing the traces, 
they found that load exhibits a high degree of self-
similarity, with Hurst parameters ranging from 0.73 to 
0.99, and that load displays epochal behavior, with the 
local frequency content of the load signal remaining 
quite stable for long periods.  

Before long they presented a study on the 
performance of different linear models for host load 
prediction based on these load traces [8]. Multiple 
linear models, including AR, MA, ARMA, ARIMA, 
and ARFIMA models were rigorously evaluated. The 
main conclusions are that load is consistently 
predictable to a very useful degree, and that the simple 
AR model is the best model of this class, due to its 
relatively good prediction ability and low overhead. 
However, these linear models themselves are limited, 
and may not be able to capture some kinds of nonlinear 
behavior in the host loads. 

Another more accurate approach is based on 
tendency-based prediction techniques [11,12]. 
Generally, they assume that if the current value 
increases, the next value will also increase, and vice 
versa. In [11], Yang et al. proposed a number of one-
step-ahead prediction strategies which give more 
weight to more recent measurements than to other 
historical data, while paying attention to different 

behaviors when “ascending” and “descending”. One 
better strategy based on the tendency with several steps 
backward was introduced by Zhang et al. in [12], using 
polynomial fitting method to produce the prediction 
values. Although these models generally perform well, 
they have a glaring error source, committing great 
errors when the time series changes its direction.  

We believe artificial neural networks are able to 
overcome those limitations. They have many important 
advantages over the traditional statistical models, most 
notably nonlinear generalization ability [13]. With this 
remarkable ability, they can learn from data examples 
and capture the underlying functional relationships 
between input and output values. Neural networks 
have been applied to modeling nonlinear time series in 
various areas, for example, stock market [14], sports 
results [15], road surface temperature [16] seasonal 
time series [17], quarterly time series [18] and even 
scheduling problems [19].  

In [19], a NARX neural network based load 
prediction was presented to define data mappings 
appropriate for dynamic resources with the aim of 
improving the scheduling decision in grid 
environments. A major difference between this 
approach and our approach is that it utilizes a recurrent 
network while our method employs feedforward 
networks for fast convergence. Also, their work merely 
focused on scheduling performance, in particular the 
execution time of application running in the proposed 
scheduling method. Not only do we improve accuracy 
of load predictions, but we also consider the cost to 
examine if such a neural network based solution is 
feasible in dynamic environments. Lastly, their 
experiments were simply carried out with only one 
network architecture, a constant learning rate of 0.2, 
and 20 minutes of the load trace beside our 
combinations of different architectures and learning 
rates with 4 load traces collected over tens of days.    

 
3. Host load prediction with artificial 
neural networks 
3.1. An overview of ANNs 
 

Artificial neural network, originally developed to 
mimic biological neural networks, is a computational 
model which is composed of a large number of highly 
interconnected simple processing elements called 
neurons or nodes. Each node receives input signals 
generated from other nodes or external inputs, 
processes them locally through an activation function, 
and produces an output signal to other nodes or 
external outputs. Given a training set of data, the ANN 
can learn the data with a learning algorithm, and forms 



a mapping between inputs and desired outputs from the 
training set through learning. After the learning 
process has finished, it is able to catch the hidden 
dependencies between the inputs and outputs and 
generalize to data never before seen. 

Among many different ANN types, the multi-layer 
feedforward network, Hopfield network, and Kohonen 
self-organizing network are probably the most 
important ones. A multi-layer feedforward network 
consists of any number of layers, nodes per layer, 
network inputs and network outputs. In this network, 
the information moves sequentially forward in only 
one direction from the inputs to the outputs. Hopfield 
network is a recurrent neural network in which all 
connections are symmetric. This network guarantees 
that its dynamics will converge. Kohonen network is 
motivated by the self-organizing behavior of the 
human brain. A set of artificial neurons learn to map 
points in an input space to coordinates in an output 
space.  

In this study, the multi-layer feedforward network 
[20], accompanied by backpropagation, which is the 
most widely used training algorithm for multi-layer 
networks, is chosen for predicting the host loads. It has 
been applied in a variety of problems, especially in the 
field of prediction, because of its inherent capability of 
arbitrary input–output mapping. More importantly, 
simplicity and fast convergence ability make it feasible 

for deployment in a real-time dynamic setting. Also, 
the availability of host load traces meets the needs of 
the multi-layer feedforward network for input and 
output data.  
 
3.2. Feedforward neural networks 
 

Figure 1 depicts an example feedforward neural 
network in operation with a host load time series. The 
network has 4 network inputs where external 
information is received, and 1 output layer C with one 
node where the solution is obtained. The network 
inputs and output layer are separated by 2 hidden 
layers: layer A with 4 nodes and layer B with 3 nodes. 
The connections between the nodes indicate the flow 
of information from one node to the next, i.e., from left 
to right.  

Each node has the same number of inputs as the 
number of units in the preceding layer. As shown in 
Figure 2, each connection is modified by a weight, and 
each node has an extra input assumed to have a 
constant value of 1. The weight that modifies this extra 
input is called the bias.  

When the network is run, each layer node performs 
the calculation in Equation 1 on its input, and transfers 
the result Oc to the next layer. 

 
 
 
 
 
 
 

where Oc is the output of the current node, n is the 
number of nodes in the previous layer, xc,i is an input 
to the current node from the previous layer, wc,i is the 
weight modifying the corresponding connection from 
xc,i, and bc is the bias. In addition, h(x) is either a 
sigmoid activation function for hidden layer nodes, or 
a linear activation function for the output layer nodes. 

 

Figure 1.  A three-layer feedforward network
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Figure 2.  Node with its inputs, weights and bias
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3.3. Backpropagation training 
 

In order to make meaningful predictions, the neural 
network needs to be trained on an appropriate data set. 
Basically, training is a process of determining the 
connection weights in the network. Examples of the 
training data set are in the form of <input vector, 
output vector> where input vector and output vector 
are equal in size to the number of network inputs and 
outputs, respectively. Then, for each example, the 
backpropagation training process involves the 
following steps.  

Step 1: An input vector is fed to the network inputs 
and the network is run: Equation 1 is computed 
sequentially forward from left to right until eventually 
the network output activation values are found.  

Step 2: The error terms for the output layer nodes, 
i.e., the difference between the desired output Dc (the 
output vector) and the actual network output Oc, is 
computed with Equation 2. 

 
 
Then these errors are propagated sequentially 

backward from right to left to calculate errors for 
hidden layer nodes based on Equation 3. 

 
 

 
where Oc is the output of the current hidden layer node, 
n is the number of nodes in the next layer, δi is the 
error for a node in the next layer and wi,c is the weight 
modifying the corresponding connection from the 
current node to that node. 

Step 3: For each connection, the change in the 
weight modifying the connection from node c to node 
p is computed using Equation 4 and added to the 
weight. 

 
 

where α is the learning rate of the network, δc is the 
error of node c and Op is the output of node p. The 
learning rate controls how quickly and how finely the 
network converges to a solution. The network is 
trained with different learning rate values ranging from 
0.01 to 0.3 in our experimentation.  

After the training process has been performed for 
every example of the training data set, one epoch 
occurs. The final goal is to find the weights that 
minimize some overall error measure such as the sum 
of squared errors or mean squared errors. We evaluate 
the accuracy of our predictions using the widely used 
normalized mean squared errors defined as follows: 

 
 
 

 
 
where σ2 is the variance of the time series in the period 
with N examples, and Oi and Di are, respectively, the 
predicted and the desired outputs at time i. 
  
4. Experimental evaluation 
4.1. Input parameters 
 

A neural predictor was developed with the aim of 
evaluating performance of neural network in host load 
prediction. Even though there are many neural network 
applications freely and commercially available, we 
developed our own program to customize and extend 
various features and parameters using Microsoft Visual 
Studio C++ 6.0. Moreover, we believe that developing 
is the best way to gain a deep understanding of its 
internal operation.  

A number of experiments were conducted with 
several input parameters. A challenging parameter 
which must be identified before running is the 
appropriate network architecture, i.e., the number of 
hidden layers, and the number of nodes for each layer. 
Unfortunately, there is no rule for choosing the exact 
numbers in neural networks, as they are more art than 
science! However, through observation and trial-and-
error we found that two hidden layers are sufficient to 
perform accurate predictions with a couple of dozens 
of inputs within a reasonable time. The number of 
output layer nodes is the easiest, since it is necessarily 
one. As a result, the networks that were tested include 
20:10:1, 30:10:1, 50:20:1 and 60:30:1. Another 
important parameter is the value of learning rate. In the 
experiments, we evaluated each of these networks with 
the learning rates valued at 0.01, 0.05, 0.1, 0.2, and 0.3.  

Once the network parameters have been determined, 
we are able to feed the data series to the networks for 
evaluation. The time series we chose here are the 4 
most interesting load traces: axp0, axp7, sahara, and 
themis in a number of load traces on Unix systems 
collected by Dinda [23]. The load is the number of 
processes that are running or are ready to run, which is 
the length of the ready queue maintained by the 
scheduler. The kernel samples the length of the ready 
queue at some rate, and averages some number of 
previous samples to produce a load average which can 
be captured by a user program. These 4 load traces 
represent diversity both in capture periods and 
machine types, as displayed in Table 1.  
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In addition, the load traces have to be normalized to 
a suitable range of values because the sigmoid 
activation function h(x) has output of the range [0, 1]. 
Also, normalization tends to make the training process 
better by improving the numerical condition and 
ensuring that various default values involved in 
initialization and termination are appropriate. There are 
several different ways to normalize the network inputs 
well suited to different ranges of input values and 
applications. By observing the means and standard 
deviations of the load traces, we confirm that all of the 
load traces are positive and most of them are 
distributed over an interval of [0, 1]. Hence, rescaling 
these values to a range of [0.1, 0.9] is thought to 
maintain the original conditions and does not discard 
much information. The following normalization 
formula is applied to every x in each load trace. 

 
 
 
 

where xmax and xmin are the maximum and minimum 
value of each load trace respectively, and LWB is the 
lower bound and UPB is the upper bound of the 
interval [0.1, 0.9]. The 4 normalized load traces are 
presented in Figure 3. 

Finally, each normalized load trace is divided into 3 
sets: learning set, validating set and testing set, and 
each accounts for a percentage of 50%, 30%, and 20% 
of the total number of traces, respectively, as detailed 
in Table 2. The learning set is fed to the neural 
networks to fit their connection weights during the 
learning process. The normalized mean squared error 
is measured using the validating set and used to 
validate whether to finish the learning process or not. 
If the current error is 20% higher than the minimum 
error, the training process is stopped and weights are 
restored to the previous values. The last set, the testing 

set, is then used for assessing the performance of the 
neural networks.   

 
4.2. Host load prediction results 
 

Figure 4 shows the experimental results. The y-axis 
represents the normalized mean squared error (NMSE), 
Mean and standard deviation (SD) of the prediction 
errors for those 4 testing sets with 4 different network 
architectures, and x-axis represents their learning rate. 
The prediction error for each load value in the testing 
set is calculated using the following equation: 
 
 
 
where N is the number of load values in the testing set, 
and Oi and Di are the predicted and the actual values at 
the ith trace respectively. 

We find that no combination of learning rate and 
network architecture is the best for all the load traces, 

Table 1.  Descriptions of 4 load traces 

Name Description Collected 
load traces Mean  Standard 

Deviation

axp0 
heavily loaded, 
highly variable 
interactive machine 

1,296,000 
(in 75 days) 1 0.54 

axp7 lightly loaded 
batch machine 

1,123,200 
(in 65 days) 0.12 0.14 

sahara 
moderately loaded, 
big memory 
computing server 

345,600 
(in 20 days) 0.22 0.33 

themis moderately loaded 
desktop machine 

345,600 
(in 20 days) 0.49 0.5 
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Figure 3.  The normalized load traces 

 
Table 2.  Load trace partitioning 

Name Training set Validating set Testing set Total 

axp0 648,000 388,800 259,200 1,296,000 

axp7 561,600 336,960 224,640 1,123,200

sahara 172,800 103,680 69,120 345,600

themis 172,800 103,680 69,120 345,600
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as the values of the Mean, SD and NMSE keep 
changing with the changes in learning rate and 
network architecture. For example, NMSE has values 
in the range [3.4%, 3.9%] in axp0, [3.8%, 5.1%] in 
axp7, [3.5%, 7.5%] in sahara, and [0.7%, 1.2%] in 
themis.  The Mean has values in the range [2.6%, 
3.2%] in axp0, [1.1%, 1.8%] in axp7, [5.5%, 12.8%] in 
sahara, and [1.6%, 3.7%] in themis. Likewise, SD has 
values in the range [5.1%, 5.7%] in axp0, [4.8%, 
5.2%] in axp7, [7.8%, 8.5%] in sahara, and [2.5%, 
3.3%] in themis. Such low values of these error terms 
imply that the neural network has successfully 
captured hidden behavior of the host load. The choices 
of learning rate and network architecture, however, do 
not affect the variation, since it is quite small.  

The learning rate and network architecture have a 
significant impact on the networks’ training time, as 
shown in Table 3. In the same training set and the 
same network architecture, the lowest learning rate of 
0.01 always results in the longest times, while the 
highest learning rate of 0.3 is involved in most cases 
with the shortest times. Similarly, it is easy to see that 
with the same training set and learning rate, there is a 
connection between most cases with the longest times 

 
Table 3.  Training time 

Name 
Learning Rate 

0.01 0.05 0.1 0.2 0.3 

20:10:1axp0 725681 68548 49436 26880 18641

30:10:1axp0 589741 89564 48653 65483 15867

20:10:1axp7 163102 9510 7402 2490 2492

30:10:1axp7 67728 9657 5756 5363 578

50:20:1axp7 218219 8182 1238 1199 1203

60:30:1axp7 235868 6408 6420 4181 4185

20:10:1sahara 80 20 30 14 10

30:10:1sahara 183 43 26 14 9

50:20:1sahara 248 56 42 109 68

60:30:1sahara 223 48 48 71 71

20:10:1themis 16752 56 57 6 7

30:10:1themis 21431 95 56 14 14

50:20:1themis 1036 207 207 235 82

60:30:1themis 130086 1027 1033 464 218

 

Figure 4.  Mean, standard deviation and normalized mean squared error 



and the largest network architecture of 60:30:1. In 
contrast, the smallest network architecture, 20:10:1, 
proves to contribute substantially to the time reduction 
in most cases linked to the shortest times, when the 
learning rate is kept unchanged in the same training set. 
Hence, a mixture of the learning rate of 0.3 and 
network architecture of 20:10:1 can be the most 
efficient choice in the sense of training time.  

We also note that the size of training set obviously 
has a strong effect on the time needed for training the 
networks. The training time sharply increases from 
only a couple of seconds to several days as the size of 
the training set is increased. For example, the size of 
training set ranges from 172,800 (sahara and themis) to 
648,000 (axp0), as shown in Table 2. Selection of the 
training set size is a tradeoff between accuracy and 
time; a training set which is too large takes the network 
a long time to complete, while a too small set is 
probably inadequate to get a complete picture of the 
load traces. The outcome suggests that a training size 
of about 100,000, equivalent to the number of loads 
collected in 5 days, is reasonable to make it possible 
for the network to quickly respond with correct 
solutions in a dynamic environment.  

Unlike the training time, which heavily depends on 
the network architecture and learning rate, the 
validating and testing time behaves in a different way 
and remains fairly stable. Figure 5 demonstrates the 
average validating and testing time for each load trace 
in proportion to the network architecture, since the 
learning rate has almost no effect. The bigger the data 
set is, the longer the validating and testing time is. The 
lines representing sahara and themis nearly overlap 
each other owing to the same size data set. In the same 
set, larger network architecture causes a larger increase 
in the validating and testing time. However, in general 
this time is trivial compared with the training time. In 

the case of sahara and themis, for instance, the 
predicted results for about 70,000 future load values 
can be obtained in just a second.   
 
4.3. Performance comparison 
 

We compare performance of the proposed neural 
predictor with that of two previously proposed 
prediction methods in terms of Mean and standard 
deviation of the prediction errors. We selected the 
networks 20:10:1 and 30:10:1, both with the same 
learning rate of 0.3. The following results were taken 
from previously published papers. One method (Yang 
et al.) is a tendency-based strategy which has been 
proven to outperform the widely used NWS method 
[11]. The other (Zhang et al.) is also based on tendency 
observation of the load traces proposed by Zhang et al. 
in [12]. At the time of writing, this method remains the 
best performer in host load prediction.  

Table 4 shows the results of performance 
comparison. We find that the neural network has 
achieved consistent improvement over the competitors 
in predicting future load values of all the load traces. 
In the case of axp7 where both method 1 and 2 are 
especially effective, the 20:10:1 network still outdoes 
them, reducing the mean by approximately 60% and 
standard deviation by 70% compared to method 2. The 
smallest difference in the mean between this network 
and method 2, about 30%, is in the case of sahara. In 
other load traces, the reduction ratio is much higher, 
from 3 times (axp0) to 5 times (axp7). 

 

 

 
Figure 5.  Validating and testing time 

 
Table 4.  Performance comparison 

METHOD axp0 axp7 sahara themis

Yang  
et al. [11]

Mean 
(%) 18.99 15.02 18.28 27.37

SD 0.44 0.38 0.37 0.48

Zhang  
et al. [12]

Mean 
(%) 10.57 2.73 9.2 10.6

SD 0.37 0.08 0.23 0.25

20:10:1 
Network

Mean 
(%) 3.00 1.11 5.95 2.34

SD 0.05 0.05 0.08 0.03

30:10:1 
Network

Mean 
(%) 3.15 1.6 6.12 2.18

SD 0.05 0.05 0.08 0.03

 



5. Conclusion 
 

In this paper, we have studied the performance and 
cost of a neural network predictor by applying it to 
load trace analysis in the area of host load prediction. 
Experimental evaluation has shown that the neural 
network consistently improves performance compared 
with previously proposed linear models and tendency-
based models in all the load traces. The 20:10:1 
network with a learning rate of 0.3 outperforms the 
method which remains the best at the time of writing, 
by reducing the mean by approximately 60% and 
standard deviation by 70%. The cost, particularly the 
training time, is extremely low, as this network needs 
only a few seconds to be trained with more than 
100,000 samples, and then makes tens of thousands of 
accurate predictions within a second.  

The prediction ability and low overhead 
convincingly demonstrate application feasibility of the 
neural predictor in dynamic computing environments 
such as computational grids. Inspired by these positive 
signals, we are now in the process of integrating the 
neural predictor into a real-time scheduler in a 
GridRPC computing system using NetSolve and 
GridSolve. We also plan to show efficiency in other 
areas beyond the area of host load predictions, for 
instance, in relation to network traffic and latency, etc. 
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