
Improving Accuracy of Host Load Predictions
on Computational Grids by Artificial Neural Networks

Truong Vinh Truong Duy1 Yukinori Sato2 Yasushi Inoguchi2

1Graduate School of Information Science,
2Center for Information Science,

Japan Advanced Institute of Science and Technology
1-1 Asahidai, Nomi, Ishikawa, 923-1292 Japan

[duytvt, yukinori, inoguchi]@jaist.ac.jp

Abstract

The capability to predict the host load of a system is

significant for computational grids to make efficient
use of shared resources. This paper attempts to
improve the accuracy of host load predictions by
applying a neural network predictor to reach the goal
of best performance and load balance. We describe
feasibility of the proposed predictor in a dynamic
environment, and perform experimental evaluation
using collected load traces. The results show that the
neural network achieves a consistent performance
improvement with surprisingly low overhead.
Compared with the best previously proposed method,
the typical 20:10:1 network reduces the mean and
standard deviation of the prediction errors by
approximately 60% and 70%, respectively. The
training and testing time is extremely low, as this
network needs only a couple of seconds to be trained
with more than 100,000 samples in order to make tens
of thousands of accurate predictions within just a
second.

1. Introduction

Grid computing [1] is designed to meet the needs of
performing large numbers of complex computations by
aggregating heterogeneous resources located in
different places over a network using open standards.
In order to achieve the best performance in such an
open and highly dynamic computing environment,
efficient task scheduling is essential to choose which
collection of distributed resources to use [2,3]. Also,
by using mechanisms such as CORBA [4], Java RMI
[5], and emerging GridRPC [6], a task can be
scheduled to execute on any of the Grid nodes.

Obviously, choosing a node would become much
easier if the scheduler could know the task’s running
time on the nodes beforehand.

In fact, the running time of a task, which varies as a
result of CPU availability, is directly related to the
average host load. The running time was pointed out to
be almost linear to the correspondingly measured host
load during execution [7]. As a result, the running
time can be determined by predicting the host load of
the system.

Fortunately, the host load is discovered to be
consistently predictable to a very useful degree from
historical data and self-similarity [8]. There have been
many efforts to make reliable host load predictions
from load history, ranging from traditional linear
models [9,10] to recently proposed tendency-based
models [11,12]. Nonetheless, such predictions are
unlikely to be accurate due to their limitations in
capturing all the underlying features of the host load
history and the dynamic nature of Grid computing
systems.

In this paper, we aim to address the following three
issues by applying artificial neural networks to the task
of host load prediction. First, we discuss whether
neural networks produce more accurate results than
previously proposed linear models and tendency-based
models in this context. Second, we consider the cost,
namely the cost for training, validating and testing, to
generate such good predictions. Finally, and most
importantly, we examine if an artificial neural network
based solution is applicable in a dynamic real-time
setting, such as computational grids facing a tradeoff
between benefits and expenses.

We perform experimental evaluation and show that
the neural network predictor achieves a consistent
improvement over the competitors in predicting future
load values. Once being trained for only a couple of

seconds with all the load traces collected over 10 days,
the simple 20:10:1 network is able to predict load
values over the next 10 days with very low mean
prediction errors, and without the need of being trained
again. The time required for producing thousands of
predicted load values is also just within a second,
almost the same as other methods. The results strongly
support the feasibility of bringing a neural predictor to
real world scheduling systems to exploit its accurate
prediction ability with surprisingly low overhead.

The remaining parts of this paper are organized as
follows. Section 2 introduces background and related
work. The neural network predictor is detailed in
Section 3. Section 4 analyzes experimental results
when our neural predictor is applied to actual
measurements and compared to results of other
previous work. Finally, we conclude our study in
Section 5.

2. Related work

Perhaps the most influential research on prediction-
based real-time systems for distributed interactive
applications is the work by P. Dinda et al. [7,8]. In [7],
the authors improved understanding of how host load
changes over time by collecting the traces of the
Digital Unix 5 second exponential load average on
over 35 different machines. By analyzing the traces,
they found that load exhibits a high degree of self-
similarity, with Hurst parameters ranging from 0.73 to
0.99, and that load displays epochal behavior, with the
local frequency content of the load signal remaining
quite stable for long periods.

Before long they presented a study on the
performance of different linear models for host load
prediction based on these load traces [8]. Multiple
linear models, including AR, MA, ARMA, ARIMA,
and ARFIMA models were rigorously evaluated. The
main conclusions are that load is consistently
predictable to a very useful degree, and that the simple
AR model is the best model of this class, due to its
relatively good prediction ability and low overhead.
However, these linear models themselves are limited,
and may not be able to capture some kinds of nonlinear
behavior in the host loads.

Another more accurate approach is based on
tendency-based prediction techniques [11,12].
Generally, they assume that if the current value
increases, the next value will also increase, and vice
versa. In [11], Yang et al. proposed a number of one-
step-ahead prediction strategies which give more
weight to more recent measurements than to other
historical data, while paying attention to different

behaviors when “ascending” and “descending”. One
better strategy based on the tendency with several steps
backward was introduced by Zhang et al. in [12], using
polynomial fitting method to produce the prediction
values. Although these models generally perform well,
they have a glaring error source, committing great
errors when the time series changes its direction.

We believe artificial neural networks are able to
overcome those limitations. They have many important
advantages over the traditional statistical models, most
notably nonlinear generalization ability [13]. With this
remarkable ability, they can learn from data examples
and capture the underlying functional relationships
between input and output values. Neural networks
have been applied to modeling nonlinear time series in
various areas, for example, stock market [14], sports
results [15], road surface temperature [16] seasonal
time series [17], quarterly time series [18] and even
scheduling problems [19].

In [19], a NARX neural network based load
prediction was presented to define data mappings
appropriate for dynamic resources with the aim of
improving the scheduling decision in grid
environments. A major difference between this
approach and our approach is that it utilizes a recurrent
network while our method employs feedforward
networks for fast convergence. Also, their work merely
focused on scheduling performance, in particular the
execution time of application running in the proposed
scheduling method. Not only do we improve accuracy
of load predictions, but we also consider the cost to
examine if such a neural network based solution is
feasible in dynamic environments. Lastly, their
experiments were simply carried out with only one
network architecture, a constant learning rate of 0.2,
and 20 minutes of the load trace beside our
combinations of different architectures and learning
rates with 4 load traces collected over tens of days.

3. Host load prediction with artificial
neural networks
3.1. An overview of ANNs

Artificial neural network, originally developed to
mimic biological neural networks, is a computational
model which is composed of a large number of highly
interconnected simple processing elements called
neurons or nodes. Each node receives input signals
generated from other nodes or external inputs,
processes them locally through an activation function,
and produces an output signal to other nodes or
external outputs. Given a training set of data, the ANN
can learn the data with a learning algorithm, and forms

a mapping between inputs and desired outputs from the
training set through learning. After the learning
process has finished, it is able to catch the hidden
dependencies between the inputs and outputs and
generalize to data never before seen.

Among many different ANN types, the multi-layer
feedforward network, Hopfield network, and Kohonen
self-organizing network are probably the most
important ones. A multi-layer feedforward network
consists of any number of layers, nodes per layer,
network inputs and network outputs. In this network,
the information moves sequentially forward in only
one direction from the inputs to the outputs. Hopfield
network is a recurrent neural network in which all
connections are symmetric. This network guarantees
that its dynamics will converge. Kohonen network is
motivated by the self-organizing behavior of the
human brain. A set of artificial neurons learn to map
points in an input space to coordinates in an output
space.

In this study, the multi-layer feedforward network
[20], accompanied by backpropagation, which is the
most widely used training algorithm for multi-layer
networks, is chosen for predicting the host loads. It has
been applied in a variety of problems, especially in the
field of prediction, because of its inherent capability of
arbitrary input–output mapping. More importantly,
simplicity and fast convergence ability make it feasible

for deployment in a real-time dynamic setting. Also,
the availability of host load traces meets the needs of
the multi-layer feedforward network for input and
output data.

3.2. Feedforward neural networks

Figure 1 depicts an example feedforward neural
network in operation with a host load time series. The
network has 4 network inputs where external
information is received, and 1 output layer C with one
node where the solution is obtained. The network
inputs and output layer are separated by 2 hidden
layers: layer A with 4 nodes and layer B with 3 nodes.
The connections between the nodes indicate the flow
of information from one node to the next, i.e., from left
to right.

Each node has the same number of inputs as the
number of units in the preceding layer. As shown in
Figure 2, each connection is modified by a weight, and
each node has an extra input assumed to have a
constant value of 1. The weight that modifies this extra
input is called the bias.

When the network is run, each layer node performs
the calculation in Equation 1 on its input, and transfers
the result Oc to the next layer.

where Oc is the output of the current node, n is the
number of nodes in the previous layer, xc,i is an input
to the current node from the previous layer, wc,i is the
weight modifying the corresponding connection from
xc,i, and bc is the bias. In addition, h(x) is either a
sigmoid activation function for hidden layer nodes, or
a linear activation function for the output layer nodes.

Figure 1. A three-layer feedforward network

1,cx

2,cx
3,cx
4,cx

cb

1,cw

2,cw
3,cw

4,cw
∑)(h cO

Figure 2. Node with its inputs, weights and bias

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
+=

+=

−

=
∑

nodelayeroutputifx

nodelayerhiddenif
exhwhere

bwxhO

x

c

n

i
icicc

1
1

)(

)(
1

,,
(1)

3.3. Backpropagation training

In order to make meaningful predictions, the neural
network needs to be trained on an appropriate data set.
Basically, training is a process of determining the
connection weights in the network. Examples of the
training data set are in the form of <input vector,
output vector> where input vector and output vector
are equal in size to the number of network inputs and
outputs, respectively. Then, for each example, the
backpropagation training process involves the
following steps.

Step 1: An input vector is fed to the network inputs
and the network is run: Equation 1 is computed
sequentially forward from left to right until eventually
the network output activation values are found.

Step 2: The error terms for the output layer nodes,
i.e., the difference between the desired output Dc (the
output vector) and the actual network output Oc, is
computed with Equation 2.

Then these errors are propagated sequentially

backward from right to left to calculate errors for
hidden layer nodes based on Equation 3.

where Oc is the output of the current hidden layer node,
n is the number of nodes in the next layer, δi is the
error for a node in the next layer and wi,c is the weight
modifying the corresponding connection from the
current node to that node.

Step 3: For each connection, the change in the
weight modifying the connection from node c to node
p is computed using Equation 4 and added to the
weight.

where α is the learning rate of the network, δc is the
error of node c and Op is the output of node p. The
learning rate controls how quickly and how finely the
network converges to a solution. The network is
trained with different learning rate values ranging from
0.01 to 0.3 in our experimentation.

After the training process has been performed for
every example of the training data set, one epoch
occurs. The final goal is to find the weights that
minimize some overall error measure such as the sum
of squared errors or mean squared errors. We evaluate
the accuracy of our predictions using the widely used
normalized mean squared errors defined as follows:

where σ2 is the variance of the time series in the period
with N examples, and Oi and Di are, respectively, the
predicted and the desired outputs at time i.

4. Experimental evaluation
4.1. Input parameters

A neural predictor was developed with the aim of
evaluating performance of neural network in host load
prediction. Even though there are many neural network
applications freely and commercially available, we
developed our own program to customize and extend
various features and parameters using Microsoft Visual
Studio C++ 6.0. Moreover, we believe that developing
is the best way to gain a deep understanding of its
internal operation.

A number of experiments were conducted with
several input parameters. A challenging parameter
which must be identified before running is the
appropriate network architecture, i.e., the number of
hidden layers, and the number of nodes for each layer.
Unfortunately, there is no rule for choosing the exact
numbers in neural networks, as they are more art than
science! However, through observation and trial-and-
error we found that two hidden layers are sufficient to
perform accurate predictions with a couple of dozens
of inputs within a reasonable time. The number of
output layer nodes is the easiest, since it is necessarily
one. As a result, the networks that were tested include
20:10:1, 30:10:1, 50:20:1 and 60:30:1. Another
important parameter is the value of learning rate. In the
experiments, we evaluated each of these networks with
the learning rates valued at 0.01, 0.05, 0.1, 0.2, and 0.3.

Once the network parameters have been determined,
we are able to feed the data series to the networks for
evaluation. The time series we chose here are the 4
most interesting load traces: axp0, axp7, sahara, and
themis in a number of load traces on Unix systems
collected by Dinda [23]. The load is the number of
processes that are running or are ready to run, which is
the length of the ready queue maintained by the
scheduler. The kernel samples the length of the ready
queue at some rate, and averages some number of
previous samples to produce a load average which can
be captured by a user program. These 4 load traces
represent diversity both in capture periods and
machine types, as displayed in Table 1.

ccc OD −=δ

∑
=

−=
n

i
ciiccc wOO

1
,)1(δδ

pcpc Ow αδ=Δ ,

(2)

(3)

(4)

∑
=

−=
N

i
ii DO

N
NMSE

1

2
2)(1

σ (5)

In addition, the load traces have to be normalized to
a suitable range of values because the sigmoid
activation function h(x) has output of the range [0, 1].
Also, normalization tends to make the training process
better by improving the numerical condition and
ensuring that various default values involved in
initialization and termination are appropriate. There are
several different ways to normalize the network inputs
well suited to different ranges of input values and
applications. By observing the means and standard
deviations of the load traces, we confirm that all of the
load traces are positive and most of them are
distributed over an interval of [0, 1]. Hence, rescaling
these values to a range of [0.1, 0.9] is thought to
maintain the original conditions and does not discard
much information. The following normalization
formula is applied to every x in each load trace.

where xmax and xmin are the maximum and minimum
value of each load trace respectively, and LWB is the
lower bound and UPB is the upper bound of the
interval [0.1, 0.9]. The 4 normalized load traces are
presented in Figure 3.

Finally, each normalized load trace is divided into 3
sets: learning set, validating set and testing set, and
each accounts for a percentage of 50%, 30%, and 20%
of the total number of traces, respectively, as detailed
in Table 2. The learning set is fed to the neural
networks to fit their connection weights during the
learning process. The normalized mean squared error
is measured using the validating set and used to
validate whether to finish the learning process or not.
If the current error is 20% higher than the minimum
error, the training process is stopped and weights are
restored to the previous values. The last set, the testing

set, is then used for assessing the performance of the
neural networks.

4.2. Host load prediction results

Figure 4 shows the experimental results. The y-axis
represents the normalized mean squared error (NMSE),
Mean and standard deviation (SD) of the prediction
errors for those 4 testing sets with 4 different network
architectures, and x-axis represents their learning rate.
The prediction error for each load value in the testing
set is calculated using the following equation:

where N is the number of load values in the testing set,
and Oi and Di are the predicted and the actual values at
the ith trace respectively.

We find that no combination of learning rate and
network architecture is the best for all the load traces,

Table 1. Descriptions of 4 load traces

Name Description Collected
load traces Mean Standard

Deviation

axp0
heavily loaded,
highly variable
interactive machine

1,296,000
(in 75 days) 1 0.54

axp7 lightly loaded
batch machine

1,123,200
(in 65 days) 0.12 0.14

sahara
moderately loaded,
big memory
computing server

345,600
(in 20 days) 0.22 0.33

themis moderately loaded
desktop machine

345,600
(in 20 days) 0.49 0.5

)(
minmax

min LWBUPB
xx

xxLWBx i
i −

−
−

+=

Figure 3. The normalized load traces

Table 2. Load trace partitioning

Name Training set Validating set Testing set Total

axp0 648,000 388,800 259,200 1,296,000

axp7 561,600 336,960 224,640 1,123,200

sahara 172,800 103,680 69,120 345,600

themis 172,800 103,680 69,120 345,600

%100*||1error Prediction
1
∑
=

−
=

N

i i

ii

D
DO

N

(6)

(7)

as the values of the Mean, SD and NMSE keep
changing with the changes in learning rate and
network architecture. For example, NMSE has values
in the range [3.4%, 3.9%] in axp0, [3.8%, 5.1%] in
axp7, [3.5%, 7.5%] in sahara, and [0.7%, 1.2%] in
themis. The Mean has values in the range [2.6%,
3.2%] in axp0, [1.1%, 1.8%] in axp7, [5.5%, 12.8%] in
sahara, and [1.6%, 3.7%] in themis. Likewise, SD has
values in the range [5.1%, 5.7%] in axp0, [4.8%,
5.2%] in axp7, [7.8%, 8.5%] in sahara, and [2.5%,
3.3%] in themis. Such low values of these error terms
imply that the neural network has successfully
captured hidden behavior of the host load. The choices
of learning rate and network architecture, however, do
not affect the variation, since it is quite small.

The learning rate and network architecture have a
significant impact on the networks’ training time, as
shown in Table 3. In the same training set and the
same network architecture, the lowest learning rate of
0.01 always results in the longest times, while the
highest learning rate of 0.3 is involved in most cases
with the shortest times. Similarly, it is easy to see that
with the same training set and learning rate, there is a
connection between most cases with the longest times

Table 3. Training time

Name
Learning Rate

0.01 0.05 0.1 0.2 0.3

20:10:1axp0 725681 68548 49436 26880 18641

30:10:1axp0 589741 89564 48653 65483 15867

20:10:1axp7 163102 9510 7402 2490 2492

30:10:1axp7 67728 9657 5756 5363 578

50:20:1axp7 218219 8182 1238 1199 1203

60:30:1axp7 235868 6408 6420 4181 4185

20:10:1sahara 80 20 30 14 10

30:10:1sahara 183 43 26 14 9

50:20:1sahara 248 56 42 109 68

60:30:1sahara 223 48 48 71 71

20:10:1themis 16752 56 57 6 7

30:10:1themis 21431 95 56 14 14

50:20:1themis 1036 207 207 235 82

60:30:1themis 130086 1027 1033 464 218

Figure 4. Mean, standard deviation and normalized mean squared error

and the largest network architecture of 60:30:1. In
contrast, the smallest network architecture, 20:10:1,
proves to contribute substantially to the time reduction
in most cases linked to the shortest times, when the
learning rate is kept unchanged in the same training set.
Hence, a mixture of the learning rate of 0.3 and
network architecture of 20:10:1 can be the most
efficient choice in the sense of training time.

We also note that the size of training set obviously
has a strong effect on the time needed for training the
networks. The training time sharply increases from
only a couple of seconds to several days as the size of
the training set is increased. For example, the size of
training set ranges from 172,800 (sahara and themis) to
648,000 (axp0), as shown in Table 2. Selection of the
training set size is a tradeoff between accuracy and
time; a training set which is too large takes the network
a long time to complete, while a too small set is
probably inadequate to get a complete picture of the
load traces. The outcome suggests that a training size
of about 100,000, equivalent to the number of loads
collected in 5 days, is reasonable to make it possible
for the network to quickly respond with correct
solutions in a dynamic environment.

Unlike the training time, which heavily depends on
the network architecture and learning rate, the
validating and testing time behaves in a different way
and remains fairly stable. Figure 5 demonstrates the
average validating and testing time for each load trace
in proportion to the network architecture, since the
learning rate has almost no effect. The bigger the data
set is, the longer the validating and testing time is. The
lines representing sahara and themis nearly overlap
each other owing to the same size data set. In the same
set, larger network architecture causes a larger increase
in the validating and testing time. However, in general
this time is trivial compared with the training time. In

the case of sahara and themis, for instance, the
predicted results for about 70,000 future load values
can be obtained in just a second.

4.3. Performance comparison

We compare performance of the proposed neural
predictor with that of two previously proposed
prediction methods in terms of Mean and standard
deviation of the prediction errors. We selected the
networks 20:10:1 and 30:10:1, both with the same
learning rate of 0.3. The following results were taken
from previously published papers. One method (Yang
et al.) is a tendency-based strategy which has been
proven to outperform the widely used NWS method
[11]. The other (Zhang et al.) is also based on tendency
observation of the load traces proposed by Zhang et al.
in [12]. At the time of writing, this method remains the
best performer in host load prediction.

Table 4 shows the results of performance
comparison. We find that the neural network has
achieved consistent improvement over the competitors
in predicting future load values of all the load traces.
In the case of axp7 where both method 1 and 2 are
especially effective, the 20:10:1 network still outdoes
them, reducing the mean by approximately 60% and
standard deviation by 70% compared to method 2. The
smallest difference in the mean between this network
and method 2, about 30%, is in the case of sahara. In
other load traces, the reduction ratio is much higher,
from 3 times (axp0) to 5 times (axp7).

Figure 5. Validating and testing time

Table 4. Performance comparison

METHOD axp0 axp7 sahara themis

Yang
et al. [11]

Mean
(%) 18.99 15.02 18.28 27.37

SD 0.44 0.38 0.37 0.48

Zhang
et al. [12]

Mean
(%) 10.57 2.73 9.2 10.6

SD 0.37 0.08 0.23 0.25

20:10:1
Network

Mean
(%) 3.00 1.11 5.95 2.34

SD 0.05 0.05 0.08 0.03

30:10:1
Network

Mean
(%) 3.15 1.6 6.12 2.18

SD 0.05 0.05 0.08 0.03

5. Conclusion

In this paper, we have studied the performance and
cost of a neural network predictor by applying it to
load trace analysis in the area of host load prediction.
Experimental evaluation has shown that the neural
network consistently improves performance compared
with previously proposed linear models and tendency-
based models in all the load traces. The 20:10:1
network with a learning rate of 0.3 outperforms the
method which remains the best at the time of writing,
by reducing the mean by approximately 60% and
standard deviation by 70%. The cost, particularly the
training time, is extremely low, as this network needs
only a few seconds to be trained with more than
100,000 samples, and then makes tens of thousands of
accurate predictions within a second.

The prediction ability and low overhead
convincingly demonstrate application feasibility of the
neural predictor in dynamic computing environments
such as computational grids. Inspired by these positive
signals, we are now in the process of integrating the
neural predictor into a real-time scheduler in a
GridRPC computing system using NetSolve and
GridSolve. We also plan to show efficiency in other
areas beyond the area of host load predictions, for
instance, in relation to network traffic and latency, etc.

References

[1] I. Foster and C. Kesselman, The Grid: Blueprint for a
New Computing Infrastructure, Morgan Kaufmann
Publishers, 1999.
[2] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G.
Shao, “Application-Level Scheduling on Distributed
Heterogeneous Networks”, Supercomputing'96, 1996.
[3] S. Jang, X. Wu, V. Taylor, "Using Performance
Prediction to Allocate Grid Resources", GriPhyN Technical
Report 2004-25, 2004, pp. 1-11.
[4] A. S. Gokhale, and B. Natarajan, “GriT: a CORBA-
based grid middleware architecture”, Proc. of the 36th
Annual Hawaii International Conference on System Sciences,
2003, pp. 1-10.
[5] M. Alt, and S. Gorlatch, “Adapting Java RMI for grid
computing”, Parallel computing technologies, Vol. 21, Issue
5, 2005, pp. 699 – 707.
[6] Y. Tanaka, H. Takemiya, H. Nakada, and S. Sekiguchi,
“Design, implementation and performance evaluation of
GridRPC programming middleware for a large-scale
computational Grid”, Proc. of 5th IEEE/ACM International
Workshop on Grid Computing, 2004.
[7] P. Dinda, “The Statistical Properties of Host Load”,

Scientific Programming, 7:3-4, 1999.
[8] P. Dinda, and D. O'Hallaron, “Host Load Prediction
Using Linear Models”, Cluster Computing, Volume 3,
Number 4, 2000.
[9] P. Dinda, “A prediction-based real-time scheduling
advisor”, Proc. of 16th International Parallel and Distributed
Processing Symposium, 2002, pp. 35-42.

[10] R. Wolski, “Dynamically forecasting network
performance using the network weather service,” Journal of
Cluster Computing, Vol.1, pp.119-132, 1998.

[11] L. Yang, I. Foster, and J. Schopf, “Homeostatic and
Tendency-based CPU Load Prediction”, Proc. of
International Parallel and Distributed Processing
Symposium, 2003, pp. 42-50.

[12] Y. Zhang, W. Sun, and Y. Inoguchi, “CPU Load
Predictions on the Computational Grid”, Proc. of IEEE
International Symposium on Cluster Computing and the Grid,
2006, pp. 321-326.

[13] G. Zhang, B.E. Patuwo, and M.Y. Hu, "Forecasting with
artificial neural networks: The state of the art", International
Journal of Forecasting 14(1), 1998, pp. 35-62.

[14] B. W. Wah, and M. L. Qian, “Constrained formulations
and algorithms for predicting stock prices by recurrent FIR
neural networks”, International Journal of Information
Technology & Decision Making, Vol.5, No. 4, 2006, pp. 639-
658.

[15] B. G. Aslan, and M. M. Inceoglu, “A Comparative Study
on Neural Network based Soccer Result Prediction”, Proc. of
Seventh International Conference on Intelligent Systems
Design and Applications, 2007.

[16] F. Liping, H. Behzad, F. Yumei, and K. Valeri,
“Forecasting of Road Surface Temperature Using Time
Series, Artificial Neural Networks, and Linear Regression
Models”, Proc. of Transportation Research Board 87th
Annual Meeting, 2008.

[17] S. F. Crone, and R. Dhawan, “Forecasting Seasonal Time
Series with Neural Networks: A Sensitivity Analysis of
Architecture Parameters”, Proc. of International Joint
Conference on Neural Networks, 2007, pp. 2099-2104.

[18] G. P. Zhang, and D. M. Kline, “Quarterly time-series
forecasting with neural networks”, IEEE transactions on
neural networks, Vol. 17, No. 6, 2007, pp. 1800-1814.

[19] J. Huang, H. Jin, X. Xie, and Q. Zhang, “Using NARX
Neural Network based Load Prediction to Improve
Scheduling Decision in Grid Environments”, Proc. of Third
International Conference on Natural Computation, 2007.

[20] Reed, R. D., and R. J. Marks, Neural Smithing, The MIT
Press, 1999.

[21] Husmeier, D., Neural Networks for Conditional
Probability Estimation, Springer, 1999.

[22] Witten, I. H., and E. Frank, Data Mining – Practical
Machine Learning Tools and Techniques, 2nd Edition, MK
Publishers, 2005.

[23] Load Traces Archive,
http://www.cs.northwestern.edu/~pdinda/LoadTraces/

