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Abstract— With energy shortages and global climate change 
leading our concerns these days, the power consumption of 
datacenters has become a key issue. Obviously, a substantial 
reduction in energy consumption can be made by powering 
down servers when they are not in use. This paper aims at 
designing, implementing and evaluating a Green Scheduling 
Algorithm integrating a neural network predictor for 
optimizing server power consumption in Cloud computing. We 
employ the predictor to predict future load demand based on 
historical demand. According to the prediction, the algorithm 
turns off unused servers and restarts them to minimize the 
number of running servers, thus minimizing the energy use at 
the points of consumption to benefit all other levels. For 
evaluation, we perform simulations with two load traces. The 
results show that the PP20 mode can save up to 46.3% of 
power consumption with a drop rate of 0.03% on one load 
trace, and a drop rate of 0.12% with a power reduction rate of 
46.7% on the other. 

Keywords- energy savings; green scheduling; neural 
predictor; Cloud computing; datacenters 

I.  INTRODUCTION 
Cloud computing [1] has emerged as a new business 

model of computation and storage resources based on on-
demand access to potentially significant amounts of remote 
datacenter capabilities. As the field matures together with the 
nonstop growth of the Internet and the world’s businesses, it 
is expected that more Cloud providers will appear and 
provide a more diverse selection of different resources and 
services. However, the deployment of datacenters in Clouds 
has put more and more computers in use each year, 
increasing energy consumption and negative pressure on the 
environment. Research shows that running a single 300-watt 
server during a year can cost about $338, and more 
importantly, can emit as much as 1,300 kg CO2, without 
mentioning the cooling equipment [2]. A recent report has 
estimated the datacenters in the US consumed approximately 
1.5% of the total electricity consumption in 2006 and this 
number is projected to double in 2011 [3]. It is even said that 
the costs to operate servers will exceed the costs to purchase 
server hardware by 2015 [4]. 

The existing techniques for energy savings in the area of 
enterprise power management at a server farm can roughly 
be divided into two categories: dynamic voltage/frequency 

management inside a server and shutting down servers when 
not in use. In the former, power savings are gained by 
adjusting the operating clock to scale down the supply 
voltages for the circuits. Although this approach can provide 
a significant reduction in power consumption, it depends on 
the hardware components’ settings to perform scaling tasks. 
On the other hand, the latter promises most power savings, 
as it ensures near-zero electricity consumed by being-turned-
off servers. However, previous works which took this 
approach had difficulties to assure service-level agreement 
due to the lack of a reliable tool for predicting future demand 
to assist the turning off/on decision- making process. 

In this paper, we aim to design, implement and evaluate a 
Green Scheduling Algorithm integrating a neural network 
predictor for optimizing server power consumption in Cloud 
computing environments by shutting down unused servers. 
The neural network predictor which we had developed 
earlier has been proven to have a highly accurate prediction 
ability with low overhead to fit in dynamic real time settings 
[5]. The use of this predictor is thought to help the algorithm 
cleverly make appropriate turning off/on decisions, and to 
make the approach more practical. As virtual machines are 
spawned on demand to meet the user's needs in Clouds, the 
neural predictor is employed to predict future load demand 
on servers based on historical demand.  

Our scheduling algorithm works as follows. According to 
the prediction, the algorithm first estimates required dynamic 
workload on the servers. Then unnecessary servers are 
turned off in order to minimize the number of running 
servers, thus minimizing the energy use at the points of 
consumption to provide benefits to all other levels. Also, 
several servers are added to help assure service-level 
agreement. The bottom line is to protect the environment and 
to reduce the total cost of ownership while ensuring quality 
of service. 

To evaluate the algorithm, we perform simulations with 
four different running modes and parameters. Evaluation 
results show that in the optimal mode, the power 
consumption reduction rate can be significantly achieved, up 
to 72.2% compared to the conventional mode, without 
affecting performance. The prediction mode can save energy 
even more, up to 79.5%, although the drop rate is quite high. 
Lastly, the mode running prediction plus 20% additional 
servers offers the best combination: a drop rate of 0.03% and 
a power reduction rate of 46.3%. 
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The remainder of this paper is organized as follows. 
Section 2 introduces background information and related 
work. The power consumption of servers is examined in 
Section 3. Section 4 presents the system model, the neural 
predictor and the algorithm. Section 5 analyzes simulator 
descriptions and simulation results. Finally, we conclude our 
study in Section 6. 

II. RELATED WORK 
Many papers have studied the dynamic voltage/frequency 

scaling technique for managing energy and server resources 
in clusters and data/hosting centers [6, 7, 8]. The work in [6] 
has mainly focused on a single server setting and its energy 
consumption is reduced by adaptive algorithms for frequency 
scaling. In [7], a cluster-level power controller has been 
proposed, although the actual power reduction is gained at 
processor level also by adjusting their frequency. An 
intensive work was introduced in [8] to find the specific 
relationship between power and frequency for optimal power 
allocation at the level of server farms. Even though 
frequency scaling technique offers substantial power savings, 
it relies on the settings of hardware components to perform 
scaling tasks. 

A recent trend is to define special states of servers which 
can provide energy savings while being able to perform 
some pre-defined tasks. In [9], PowerNap was proposed as 
an approach to energy conservation, where the server moves 
rapidly between an active state and a near-zero-power idle 
state, called “nap” state, in response to load. Another special 
state of server, called “Somniloquy”, was presented in [10] 
to augment network interfaces and enable a server to respond 
to network traffic such as remote desktop and VoIP in the S3 
state for saving energy. [11] introduced a similar barely-alive 
state, that allows remote accesses to a server’s main memory 
even when many of its other components have been turned 
off. This approach has a downside, however, as it requires 
additional specially designed hardware to implement the 
special state. 

We believe that a software-based approach that takes 
advantage of currently available server’s states would be 
more cost-efficient and easier for datacenters deployment. To 
this end, workload concentration and temporary server 
turnoff promise the most power savings. A power aware 

request distribution scheme for server clusters was 
introduced in [12], where energy reduction is obtained by 
turning off some servers when the current load can be served 
by fewer servers. Health et al. [13] designed servers for a 
heterogeneous cluster that employs modeling and 
optimization to minimize energy consumption. Recently, the 
energy-aware consolidation problem for Clouds was 
investigated in [14] to show the performance-energy trade-
offs and the existence of an optimal point. In this paper, we 
design a green scheduling algorithm that also concentrates 
workload on a subset of servers and then turns off the others. 
In contrast to previous work, we employ a highly accurate 
neural network predictor for predicting user’s demand to turn 
on/off servers, considering the predicted demand and 
server’s restart delay. 

Neural networks have been applied to modeling 
nonlinear time series in various areas, for example, stock 
market [15], sports results [16], road surface temperature 
[17], and scheduling problems [18]. Neural networks have 
many important advantages over the traditional statistical 
models, most notably the nonlinear generalization ability. 
With this remarkable ability, they can learn from data 
examples and capture the underlying functional relationships 
between input and output values. In [18], a NARX neural 
network based load prediction was presented to define data 
mappings appropriate for dynamic resources with the aim of 
improving the scheduling decision in grid environments.  

There are several major differences between their 
approach and our approach. First, it utilized a recurrent 
network while our neural predictor employed feedforward 
networks for the purpose of ensuring both high performance 
and low overhead. Second, and more important, their work, 
as well as other previous works, merely focused on 
performance, in particular the execution time of application 
running in the proposed method. In contrast, not only did we 
improve the performance, but we also considered the cost, 
namely the cost for training, validating and testing, to 
examine if such a neural network based solution is feasible in 
dynamic real-time settings. This is very important because 
the solution may not be applicable for real-time applications 
if it takes hours or days for training.  

Figure 1. CPU utilization and power consumption. 
 

Figure 2.  State transition of the Linux machine. 



III. UNDERSTANDING POWER CONSUMPTION 
Understanding the relationship between power 

consumption, CPU utilization and the transition delay 
between different server’s states is essential to design 
efficient strategies for energy savings. We examined this 
relationship by measuring power consumption of typical 
machines in different states. The machines we used include a 
Linux machine with AMD Phenom™ 9500 Quad-Core 
Processor 2.2GHz, and a Windows machine with AMD 
Athlon™ 64 X2 Dual-Core Processor 5000+ 2.6GHz. They 
were connected to a System Artware SHW3A watt-hour 
meter at the power plug to record power consumption of the 
whole machines. 

Figure 1 shows power consumption of the two machines 
in the idle state and different CPU utilization levels, ranging 
from 10% to 100%. In the Linux machine, the CPU load is 
generated using the lookbusy load generator to attempt to 
keep the CPUs at a chosen utilization level, while in the 
Windows machine, load is generated by a simple loop 
written in C#. To obtain more accurate data, the CPU 
utilization is maintained at a stable state for 5 minutes, and 
the average recorded power consumption over the period is 
reported. The power consumption appears to be almost linear 
with CPU utilization. An increase of 10% in CPU utilization 
leads to an increase of approximately 6.5% and 3% in power 
consumption in the quad-core and dual-core machines, 
respectively. Besides, we observe that the idle state 
consumes a substantial amount of energy, as much as 62%, 
in case of the quad-core machine, and 78% in the case of the 
dual-core machine, of the peak power. This observation 
implies that there is room for power conservation and hence, 
a large power reduction can be achieved by sending idling 
servers to a lower power state. 

We also measured power consumption of pre-defined 
low power states, including shutdown, hibernate, suspend-to-
disk, suspend-to-RAM, power-on-suspend with the Linux 
machine, and shutdown, hibernate, standby with the 
Windows machine. Figures 2 and 3 display the power 
consumption of these states in the Linux and Windows 
machines respectively, alongside transition delays from the 
idle state to each state and vice versa (in seconds), and the 
peak power incurred over the transition period. In the Linux 
machine, suspend-to-RAM seems to be the best state, in 

terms of both power consumption and transition delay, as it 
needs only 10 seconds to come to this state from the idle 
state, and 20 seconds for the opposite direction. The peak 
power incurred during the transition is equivalent to roughly 
30% CPU utilization. Similarly, the standby state is a good 
candidate to replace the idle state for saving energy in 
Windows machines. It consumes only 3.7W, and takes as 
little as 5 and 10 seconds for transition delays. 

IV. THE SYSTEM MODEL, THE NEURAL PREDICTOR AND 
THE ALGORITHM 

A. The System Model 
Figure 4 depicts the system model that we consider in 

this paper. Actually, it represents a simple architecture of 
Cloud computing, where a Cloud provider, consisting of a 
collection of Datacenters and CISRegistry (Cloud 
Information Service Registry), provides utility computing 
service to Cloud users/DCBrokers. The Cloud users in turn 
use the utility computing service to become a SaaS provider 
and provide web applications to their end users. 

A request from a Cloud user is processed in several steps 
as follows.  

① Datacenters register their information to the CIS 
Registry.  

② A Cloud user/DCBroker queries the CISRegistry for 
the datacenters’ information. 

③ The CISRegistry responds by sending a list of 
available datacenters to the user. 

④ The user requests for processing elements through 
virtual machine creation. 

⑤ The list of available virtual machines is sent back for 
serving requests from end users to the services 
hosted by the user. 

A datacenter is composed of a set of hundreds to 
thousands of processing servers. In addition, it has several 
controllers which have four main functions: (1) registering 
the datacenter’s information to the CISRegistry, (2) 
accepting requests from Cloud users, (3) distributing load 
among virtual machines and recording the load as historical 
data for prediction, (4) running the green scheduling 
algorithm for making decision on creation and destruction of 
virtual machines in servers, and turning servers off/on for 

 
Figure 3.  State transition of the Windows machine.  

Figure 4.  The system model. 



energy savings. A server is responsible for managing virtual 
machines it is hosting. A server can host multiple virtual 
machines at the same time, but one virtual machine can be 
hosted in only one server. Virtual machines appear as 
processing elements from the viewpoint of Cloud users. 

B. The Neural Predictor 
A three-layer neural network predictor in operation with 

a time series input is plotted in Figure 5. The network has 4 
network inputs where external information is received, and 1 
output layer C with one unit where the solution is obtained. 
The network input and output layers are separated by 2 
hidden layers: layer A with 4 units and layer B with 3 units. 
The connections between the units indicate the flow of 
information from one unit to the next, i.e., from left to right. 

Each node has the same number of inputs as the number 
of nodes in the preceding layer. Each connection is modified 
by a weight, and each node has an extra input assumed to 
have a constant value of 1. The weight that modifies this 
extra input is called the bias. When the network is run, each 
layer node performs the calculation in the following equation 
on its input, and transfers the result Oc to the next layer. 

 
 
 
 
 
 
 

where Oc is the output of the current node, n is the number of 
nodes in the previous layer, xc,i is an input to the current node 
from the previous layer, wc,i is the weight modifying the 
corresponding connection from xc,i, and bc is the bias. In 
addition, h(x) is either a sigmoid activation function for 
hidden layer nodes, or a linear activation function for the 
output layer nodes. 

In order to make meaningful predictions, the neural 
network needs to be trained on an appropriate data set. 
Basically, training is a process of determining the connection 
weights in the network. Examples of the training data set are 
in the form of <input vector, output vector> where input 
vector and output vector are equal in size to the number of 
network inputs and outputs, respectively. The final goal is to 
find the weights that minimize some overall error measure 
such as the sum of squared errors or mean squared errors. 

We have developed a neural predictor and performed 
experiments to prove its highly accurate prediction ability 
with low overhead to fit in dynamic real time settings similar 
to this system model [5]. For example, the 20:10:1 network 
with a learning rate of 0.3 has reduced the mean and standard 
deviation of the prediction errors by approximately 60% and 
70%, respectively. The network needs only a few seconds to 
be trained with more than 100,000 samples, and then makes 
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Figure 5.  A three-layer network predictor. 

Inputs: list of servers in the datacenter and their current 
state; TRESTARTING: delay necessary for a server to come to 
ON from OFF; C: server capacity. 

Output: decision for ON/OFF and updated list of 
servers. 

Periodically do at each time unit t (Evaluation phase) 
Ask the predictor to predict loads from time t to time t + 

TRESTARTING based on the collected historical loads during 
the period of [0, t - 1] 

Find the peak load Lp from time t to time t + TRESTARTING 
Find the number of necessary servers at time t: Nt =  Lp 

div C  
Assume Nc = number of servers in ON state 
If  Nt = Nc: no action 
Else if Nt > Nc: choose (Nt - Nc) servers in OFF state and 

signal them to restart 
Else if Nt < Nc: choose (Nc - Nt) servers in ON state with 

free processing cores and signal them to shutdown. 
 

Figure 6.  Pseudo-code of the algorithm. 

 
Figure 7.  The modified communication flow. 
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tens of thousands of accurate predictions within a second, 
without the need of being trained again. 

This predictor will be employed in the green scheduling 
algorithm to predict future load demand from Cloud users 
based on historical demand recorded during the collection 
phase. In the evaluation phase, the algorithm uses its 
prediction in the turning off/on decision making process after 
performing dynamic workload concentration on the servers. 
The latest loads, for example the 30 latest loads for the 
network of 30:10:1 and 20 latest loads for the network of 
20:10:1, are fed into the neural predictor to perform the 
prediction.  

C. The Green Scheduling Algorithm 
The green scheduling algorithm, described in Figure 6, is 

a key component in determining which servers should be 
turned off/on. It will turn on servers when the load increases 
and vice versa, turn off servers when the load decreases. 
However, as it takes some time for a server to come to full 
operation, it must be turned on before it is actually needed. 
Hence, the number of running servers at time t must be 
sufficient to tolerate the peak load until more servers are 
ready to share. Also, to assure service-level agreement, each 
server must not be loaded more than its capacity C, and one 
processing core should be allocated to only one virtual 
machine. 

A server can be in one of the following four states: OFF, 
RESTARTING, ON, and SHUTTING. Initially all servers 
are in the OFF state, which is actually a selected low-power 
state to send a server to for energy savings. For instance, 
OFF state may refer to “suspend-to-RAM” in a Linux 
machine and, “standby” in a Windows machine in Section 3. 
Upon receiving a “restarting” signal, the server moves from 
OFF to RESTARTING. It will stay in this state for 
TRESTARTING seconds before coming to ON. The ON state 
implies that the server is idling, waiting for a user’s request 
or processing it. Likewise, when a server is signaled to turn 
off, it will move and stay in the SHUTTING state for 
TSHUTTING seconds before completely changing its state to 

OFF. The power consumptions in OFF, RESTARTING, ON, 
and SHUTTING are POFF, PRESTARTING, PON, and PSHUTTING 
watts, respectively. 

V. EXPERIMENTAL EVALUATION 

A. Simulator Description 
We performed simulations using the CloudSim and 

GridSim toolkits [19, 20]. Certain considerable custom 
modifications were made to meet our needs, notably:  

① We added a new dimension to the toolkits, the 
energy dimension, to calculate power consumption, 
to enable the server’s different states, to shutdown 
and restart servers, etc. 

② New classes were added to implement the neural 
predictor.  

③ We implemented the green scheduling algorithm. 
In addition, we modified the original CloudSim 

communication flow to another one shown in Figure 7. First, 
each datacenter registers itself with the CISRegistry. The 
datacenter broker queries the CISRegistry for a list of 
datacenters which offer services matching the user’s 
application requirements on behalf of users. The broker then 
deploys the application with the matching datacenter for 
processing. The simulation ends after this process has been 
completed in the original flow. Therefore, we added a new 
entity, called User Workload Generator, to periodically 
impose load on the system for N steps (time unit = second). 
As can be seen from the Figure, virtual machines are created 
and destroyed at each step without paying attention to virtual 
machine migration because client’s requests are supposed to 
be completely processed within the step.  

The workload is defined as the number of requests from 
end users. The loads are generated in the same shapes as the 
traces containing all requests to NASA and ClarkNet web 
servers [21]. In the generated traces, timestamp is 
compressed to 5 second resolution and the peak load is 
normalized to the total capacity of all processing cores in the 

 

Figure 8.  The NASA and ClarkNet load traces. 



datacenters in the simulations. Two days of these traces are 
plotted in Figure 8. The NASA trace has a mean request of 
3.7, a standard deviation of 2.7, a maximum request of 22 
and a minimum request of 0. Compared to the NASA trace, 
the ClarkNet trace has much higher corresponding values, 
with a mean request of 14.9, a standard deviation of 9.2, a 
maximum request of 80 and a minimum request of 0. Both 
traces, however, exhibit typical workload characteristics of 
web servers: heavily loaded during daytime and lightly 
loaded during nighttime. As a result, we use the first day as 
the collection phase in order to record historical loads for 
training the neural predictor, with the hope that it can capture 
the self-similarity. The second day is used as the evaluation 
phase for performance evaluation, where we predict next 
loads using the latest loads’ information. 

Each server in the data center is simulated to have a 
capacity C of 1000 requests/second for one processing core. 
Three types of servers are considered: single-core servers, 
dual-core servers and quad-core servers. Server’s total 
capacity is assumed to be linear with the number of 
processing cores. The number of requests that exceed its 
capacity is considered as drops. Based on the results in 
Section 3, we assume that states of OFF, RESTARTING, 
ON, and SHUTTING consume 7W, 150W, 140W, and 
150W, respectively. Also, transition delays TRESTARTING and 
TSHUTTING are set to 20 seconds and 10 seconds respectively. 

In addition, we develop four different running modes in 
the simulations for performance comparison among them. 
① Normal mode (NM): the traditional mode where all the 

servers are kept running all the time regardless of load. 
This mode acts as a base for calculating the power 
reduction rate in other modes. 

② Optimal green mode (OP): future load is exactly known 
in advance and the number of necessary servers at each 
step can be correctly identified.  

③ Prediction green mode (PR): future load is predicted by 
the predictor and the number of necessary servers at 
each step is identified based on the predicted load. The 
predictor is employed as two networks of 20:10:1 and 
30:10:1, with a constant learning rate of 0.3.  

④ Prediction plus additional servers (PP): similar to the 
PR mode, and a given number of servers are added to 
assure service-level agreement in case the requested 
load is more than the capacity of the predicted servers. 
For example, if the predictor predicts 5 servers and we 
use 2 additional servers, we will actually use 5 + 2 = 7 
servers instead of only 5 to reduce the drop rate. In the 
simulations, this PP mode is run with approximately 
10% and 20% of the total number of available servers 
as additional servers and the 20:10:1 network. 

Finally, the simulations are run in the following process. 
The system is modeled to run in two days, with the workload 
imposed by the User Workload Generator entity. During the 
first day, the green scheduling algorithm in all running 
modes, except the NM mode, is responsible for collecting the 
loads and storing them as historical data to provide to the 
neural predictor. Basically there is almost no difference 
among these modes, as they are required to run in the same 
way as the NM mode. At the end of the day, when all 
historical data have been stored, they will be fed into the 
neural predictor to start its training phase. The training phase 
is performed online as it is expected to be completed in just 
one minute. Then, the predictor will make load predictions 
for the second day based on what it has learned. In the 

 TABLE I.          SIMULATION RESULTS ON NASA WITH THE BEST OF EACH CASE DISPLAYED IN BOLDFACE 

Datacenter Mode Power (KWH) Reduction Drop Datacenter Mode Power (KWH) Reduction Drop 

32 Single-
Core Servers 

NM 108 0% 0% 

16 Dual-
Core 

Servers 

NM 54 0% 0% 
OP 37 65.7% 0% OP 20 63.0% 0% 

PR20 26.9 75.1% 19% PR20 15.6 71.1% 10.2% 
PR30 27.4 74.6% 17.2% PR30 13.6 74.8% 18.1% 
PP10 40.3 62.7% 2.36% PP10 20.3 62.4% 2.28% 
PP20 47.6 55.9% 0.83% PP20 27.8 48.5% 0.18% 

Datacenter Mode Power (KWH) Reduction Drop Datacenter Mode Power (KWH) Reduction Drop 

8 Quad-Core 
Servers 

NM 27 0% 0% 

512 Single-
Core 

Servers 

NM 1721 0% 0% 
OP 11 59.3% 0% OP 572 66.8% 0% 

PR20 8.7 67.8% 6.9% PR20 496.7 71.1% 10.2% 
PR30 7.5 72.2% 13.4% PR30 389.2 77.4% 26.5% 
PP10 11.8 56.3% 0.94% PP10 557 67.6% 6% 
PP20 14.4 46.7% 0.12% PP20 804.2 53.3% 0.35% 

Datacenter Mode Power (KWH) Reduction Drop Datacenter Mode Power (KWH) Reduction Drop 

256 Dual-
Core Servers 

NM 861 0% 0% 

128 Quad-
Core 

Servers 

NM 431 0% 0% 
OP 287 66.7% 0% OP 144 66.6% 0% 

PR20 213.6 75.2% 19% PR20 102.3 76.3% 22.5% 
PR30 214.6 75.1% 19.1% PR30 114.7 73.4% 15.2% 
PP10 292.3 66.1% 4.5% PP10 147 65.9% 4.1% 
PP20 355.6 58.7% 1.26% PP20 187.1 56.6% 0.89% 

 



second day, the algorithm in PR and PP modes will turn off 
unused servers and turn on them according to the predictions. 
The power consumption and drop rate are also recorded for 
this day.  

This running process can be repeated if the system is 
simulated to run in a longer period. For each day, the actual 
workload imposed on the system during the day is collected 
to provide the neural predictor with the most up-to-date 
training data. The training phase can take place regularly on 
a daily basis, once a day at the time of light load, at midnight 
for instance. In doing so, the neural predictor is thought to be 
able to sufficiently adapt to workload changes over time. 

B. Results 
The simulations were conducted on SGI Altix XE nodes 

having configuration: Intel Quad-Core Xeon, 8GB RAM, 
Linux OS, and JDK 1.6. The number of servers in the 
datacenters was varied from 32, a representation for small-
size datacenters, to 512, for medium-size datacenters, each 
datacenter with three types of servers. The simulation results 
on NASA and ClarkNet load traces are presented in Tables I 
and II, where PR20 and PR30 represent PR mode with 
networks of 20:10:1 and 30:10:1, respectively. Similarly, 
PP10 stands for PR20 mode plus 10% additional servers, 
and PP20 stands for PR20 mode plus 20% additional servers. 

The results suggest that the performance, which is 
represented by the drop rate, on ClarkNet is higher than that 
on NASA in most cases. Drop rate is the ratio of the number 
of requests that exceed servers’ capacity to the total number 
of requests. The results are perhaps due to a more self-
similarity of the ClarkNet load trace that leads to more 
accurate predictions. 

We also note an obvious relationship between the power 
reduction rate and the drop rate in the simulations. The 
reduction rate is always inversely proportional to the drop 
rate, except for the OP mode, where the drop rate is 
maintained at 0%. In this mode, a significant power 
consumption reduction rate can be achieved, up to 66.8% on 
NASA and 72.2% on ClarkNet compared to the conventional 
NM mode, without affecting performance as the drop rate is 
0%. The reduction rate appears to be inversely proportional 
to the number of cores in a server: the fewer cores the server 
has, the higher the power reduction rate is, since it is more 
flexible to turn off/on servers with fewer cores. Nevertheless, 
the difference is trivial with a high number of servers. On 
NASA, the reduction rate is 65.7% in the case of 32 single-
core servers in comparison to 59.3% in the case of 8 quad-
core servers, but it stands at 66.8% and 66.6%, not much 
difference, in the cases of the 512 single-core and 128 quad-
core servers. This tendency also appears on ClarkNet, where 
a difference of 4.6% in the reduction rates in cases of 32 
single-core servers and 8 quad-core servers decreases to 
only 0.2% in cases of 512 single-core servers and 128 quad-
core servers. 

The OP mode is optimal, and is impractical too, since it 
seems that there is no way to exactly know in advance the 
future workload. In contrast, the PR mode is practical 
because it applies a prediction mechanism to historical loads 
for predicting future loads, and then makes decision based on 
them. On NASA, it can save energy up to 77.4%, with the 
30:10:1 network for 512 single-core servers. This power 
reduction rate is even higher on ClarkNet, up to 79.5%, with 
the 30:10:1 network for 256 dual-core servers. However, the 
cost is quite high, as the lowest drop rates that it can offer 
stays at as much as 6.9% and 3.7% on NASA and ClarkNet, 

TABLE II.          SIMULATION RESULTS ON CLARKNET WITH THE BEST OF EACH CASE DISPLAYED IN BOLDFACE 

Datacenter Mode Power (KWH) Reduction Drop Datacenter Mode Power (KWH) Reduction Drop 

32 Single-
Core Servers 

NM 108 0% 0% 

16 Dual-
Core 

Servers 

NM 54 0% 0% 
OP 31.4 70.9% 0% OP 16.5 69.4% 0% 

PR20 24.2 77.6% 13.6% PR20 13.6 74.8% 7.6% 
PR30 24 77.8% 14% PR30 13.3 75.4% 8.8% 
PP10 40 63.0% 0.41% PP10 19.6 63.7% 0.64%
PP20 49.2 54.4% 0.07% PP20 26.3 51.3% 0.05%

Datacenter Mode Power (KWH) Reduction Drop Datacenter Mode Power (KWH) Reduction Drop 

8 Quad-Core 
Servers 

NM 27 0% 0% 

512 Single-
Core 

Servers 

NM 1721 0% 0% 
OP 9.1 66.3% 0% OP 478.1 72.2% 0%

PR20 7.9 70.7% 3.7% PR20 390.2 77.3% 12.5%
PR30 7.2 73.3% 6.3% PR30 398 76.9% 11.4%
PP10 10.9 59.6% 0.29% PP10 542.5 68.5% 1.64%
PP20 14.5 46.3% 0.03% PP20 751.2 56.4% 0.12%

Datacenter Mode Power (KWH) Reduction Drop Datacenter Mode Power (KWH) Reduction Drop 

256 Dual-
Core Servers 

NM 861 0% 0%

128 Quad-
Core 

Servers 

NM 431 0% 0%
OP 240 72.1% 0% OP 120.8 72.0% 0% 

PR20 191.3 77.8% 14.1% PR20 100.9 76.6% 10.6%
PR30 176.8 79.5% 21.1% PR30 101 76.6% 10.5%
PP10 279.7 67.5% 1.36% PP10 138.4 67.9% 1.4%
PP20 344.7 60.0% 0.3% PP20 175.1 59.4% 0.31%

 



respectively. Both networks of 20:10:1 and 30:10:1 exhibit 
similar performance behavior. 

Lastly, the PP mode proves to be the most practical 
solution. The more additional servers we have, the more we 
reduce the drop rate. In the case of 8 quad-core servers with 
approximately 20% = 2 additional servers, it provides a drop 
rate of 0.12%, and a power reduction rate of 46.7% on 
NASA, and a drop rate of as low as 0.03% with a power 
reduction rate of 46.3% on ClarkNet. It is expected that the 
drop rate can be reduced further, to a near-zero level, when 
more additional servers are added. 

VI. CONCLUSION 
This paper has presented a Green Scheduling Algorithm 

which makes use of a neural network based predictor for 
energy savings in Cloud computing. The predictor is 
exploited to predict future load demand based on collected 
historical demand. The algorithm uses the prediction in 
making turning off/on decisions to minimize the number of 
running servers. In order to demonstrate the algorithm, we 
have performed simulations with different parameters and 
running modes. From the results, we have concluded the best 
configuration is the prediction plus 20% additional servers 
for assuring service level. It can offer 46.3% power reduction 
while maintaining the drop rate at as low as 0.03% on 
ClarkNet, and a power reduction rate of 46.7% with a drop 
rate of 0.12% on NASA.  

In future work, we plan to compare the algorithm with 
other power management schemes which employ different 
load prediction mechanisms. The system model should be 
extended to deal with a more diversity of workloads and 
application services, as well as architectures of datacenters 
for a better simulation of cloud environments. A deployment 
of the algorithm in real server farms to show its efficiency in 
a real setting is also worth considering. 
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