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Abstract— The hybrid MPI-OpenMP paradigm is an emerging trend to exploit SMP clusters. In this paper, we improve 
performance of treecode algorithm for n-body simulation by employing the hybrid paradigm. The work load of force 
calculation which accounts for upwards of 90% of computational cycles is shared among OpenMP threads after ORB domain 
decomposition among MPI processes. Besides, loop scheduling of OpenMP threads is adopted with appropriate chunk size to 
provide better load balance. Experimental results demonstrate that the hybrid MPI-OpenMP program outperforms the 
corresponding pure MPI program by average factors of 1.52 on 4-way cluster and 1.21 on 2-way cluster. 
 
I. Introduction 

A combination of shared memory and message 
passing parallelization paradigms within the same 
application, hybrid programming, is expected to 
provide a more efficient parallelization strategy for 
clusters of SMP nodes. This paper describes the 
performance improvement of n-body simulation by 
employing the hybrid MPI-OpenMP programming 
paradigm on SMP clusters. The n-body is a classical 
problem, appearing in astrophysics, molecular 
dynamics, and graphics. In parallelization of the tree 
code algorithm, the hybrid model exploits two levels 
of parallelism on an SMP cluster where MPI is used to 
handle parallelism across nodes and OpenMP is 
employed to carry out parallelism within a node. 
Multiple OpenMP threads are used with each occupies 
one processor of an SMP node to process the 
calculation of gravitational forces on the bodies in 
parallel. Besides, loop scheduling with static, dynamic, 
and guided methods is adopted to ensure sufficient 
work with better load balance for the threads. 
II. The n-body problem 
A. Tree Code Algorithm 

The n-body problem involves advancing the 
trajectories of n bodies according to their time 
evolving mutual gravitation field. The essence of the 
tree code is the recognition that a distant group of 
bodies can be well-approximated by a single body, 
located at the center of mass with a mass equal to total 
mass of the group. It represents the distribution of the 
bodies in quad-tree for 2D space which is 
implemented by recursively dividing the 2D space 

into 4 subspaces, until each subspace contains one 
body as illustrated in Figure 1. After the tree 
construction phase, the force on a body in the system 
can be evaluated by traversing down the tree from root.  
B. Parallelization of Tree Code 

Since the tree is very unbalanced when the bodies 
are not uniformly distributed in their bounding box, it 
is important to divide space into domains with equal 
work-loads to avoid load imbalance. Therefore, the 
Orthogonal Recursive Bisection (ORB) domain 
decomposition is adopted to divide the space into as 
many non-overlapping subspaces as processors, each 
of which contains an approximately equal number of 
bodies, and assign each subspace to a processor.  

After the domain decomposition, each process has 
only the local tree for local bodies. In principle, they 
need the global tree to determine the forces due to the 
effect of influence ring along the borders. For example, 
node n belonging to process 0 has influence on bodies 
along the borders with P1, P2, and P3 as displayed in 
Figure 2. Thus node n, as well as other necessary 
nodes which represent a cluster of bodies, is called 
essential and must be known by P1, P2, and P3 to 
compute the forces of bodies in the influence ring of n. 
Each processor first collects all the nodes in its 
domain deemed essential to other processors by 
walking down its local tree from root, and then 
exchanges these essential nodes directly with the 
appropriate destination processors. Once all 
processors have received and inserted the data 
received into the local tree, each processor can 
proceed exactly as in the sequential case. 
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Fig. 1.  Bodies in 2D space and the quad-tree. 
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Fig. 2. ORB decomposition and the influence ring of a node. 
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Gravitational force F 
between two bodies with 
masses ma, mb and distance 
r is given by: 



C. Exploiting Two Levels of Parallelism with 
Hybrid Parallel Programming Paradigm 

Multiple levels of parallelism are achieved with the 
hybrid program as shown in Figure 3. For the first 
level, the bodies are distributed in a balanced way 
among the MPI processes using ORB domain 
decomposition. After local tree construction, the 
processes collect and exchange essential nodes to each 
other to insert into and expand the local trees. Each 
process then walks through its own tree to create a list 
of interactive nodes for each body similar to the case 
of sequential algorithm. For the second level, the force 
calculation is eminently suitable for parallelizing with 
OpenMP work-sharing threads running in each MPI 
process. The bodies and their corresponding list of 
interactive nodes are assigned to different threads for 
calculating the force on each body using 
static/dynamic/guided scheduling with appropriate 
chunk size. Hence, the hybrid program is expected to 
speed up the performance. 

III. Experimental results 
Figure 4 displays the execution time of the MPI and 

hybrid codes simulating the interactions among 105 
bodies on our 4-way Diplo cluster and 2-way Atlantis 
cluster, both with Xeon processors and Gigabit 
Ethernet. In both clusters, no matter how many 
processors are used, the hybrid implementation 
outperforms the pure MPI one by average factors of 
1.52 on Diplo and 1.21 on Atlantis at all times. We 
also observe that the factor on Diplo is higher than on 
Atlantis, resulting from a greater number of OpenMP 
threads. As a result, it is expected that this factor will 

be even higher in 8 or 16-way clusters. 
In addition, another important advantage of the 

hybrid model compared to pure MPI model is that it 
lowers the number of sub-domains in ORB domain 
decomposition. For instance, we need to create only 4 
sub-domains for the hybrid program while 16 sub-
domains are necessary for the MPI program on 4-way 
Diplo cluster. As the number of sub-domains increases, 
the shapes of domains have a larger range of aspect 
ratios forcing tree walks to proceed to deeper levels. 
The complexity involved in determining essential 
nodes also rises with the number of sub-domains. We 
found that the number of interactions grows with the 
number of sub-domains because of these effects. Thus, 
the hybrid model helps reduce this interaction 
overhead.  

We also tested performance of the hybrid program 
with a combination of different chunk sizes and 
scheduling methods, including static, dynamic, and 
guided on 4-way cluster using 8 and 16 CPUs. The 
execution time obtained by running the hybrid code is 
listed in Table I. Schedule dynamic outweighs 
schedule static and guided in most cases, and the 
chunk size has an important impact on the 
performance. This means that choosing a chunk size is 
a trade-off between the quality of load balancing and 
the synchronization and computation costs. 

IV. Conclusion 
This paper described performance and 

programming efforts for n-body problem under pure 
MPI and hybrid MPI-OpenMP programming models. 
With the hybrid model, after ORB domain 
decomposition among MPI processes, the work load 
of time-consuming routines for calculating forces of 
the bodies is shared among OpenMP threads with loop 
scheduling. Given these abilities, the hybrid program 
outperforms the pure MPI programs by average 
factors of 1.52 on 4-way cluster and 1.21 on 2-way 
cluster. 
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Fig. 4.  Execution time on 4-way Diplo and 2-way Atlantis clusters. 
  

TABLE I 
EXECUTION TIME WITH DIFFERENT SCHEDULES AND CHUNK SIZES 

(SECONDS) 

CHUNK SIZE 100 500 1000 2000 5000

Static 755.7 754.8 757 752.3 906.8
Dynamic 754.3 751.8 756.2 752.1 906.8

8 
C

PU
s 

Guided 758 765.5 756.3 767.7 908.8

Static 389.9 387.8 385.7 409.8 447.4

Dynamic 388.2 386.3 384.1 408.1 445.3

 1
6 

C
PU

s 

Guided 387.1 388.7 390.6 407.9 445.6
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Fig. 3.  Multiple levels of parallelism with the hybrid program. 
  


