
Performance Improvement of Treecode Algorithm
for N-Body Problem with Hybrid Parallel Programming

Truong Vinh Truong Duy, Katsuhiro Yamazaki, and Shigeru Oyanagi
Graduate School of Science and Engineering, Ritsumeikan University

Abstract— The hybrid MPI-OpenMP paradigm is an emerging trend to exploit SMP clusters. In this paper, we improve
performance of treecode algorithm for n-body simulation by employing the hybrid paradigm. The work load of force
calculation which accounts for upwards of 90% of computational cycles is shared among OpenMP threads after ORB domain
decomposition among MPI processes. Besides, loop scheduling of OpenMP threads is adopted with appropriate chunk size to
provide better load balance. Experimental results demonstrate that the hybrid MPI-OpenMP program outperforms the
corresponding pure MPI program by average factors of 1.52 on 4-way cluster and 1.21 on 2-way cluster.

I. Introduction

A combination of shared memory and message
passing parallelization paradigms within the same
application, hybrid programming, is expected to
provide a more efficient parallelization strategy for
clusters of SMP nodes. This paper describes the
performance improvement of n-body simulation by
employing the hybrid MPI-OpenMP programming
paradigm on SMP clusters. The n-body is a classical
problem, appearing in astrophysics, molecular
dynamics, and graphics. In parallelization of the tree
code algorithm, the hybrid model exploits two levels
of parallelism on an SMP cluster where MPI is used to
handle parallelism across nodes and OpenMP is
employed to carry out parallelism within a node.
Multiple OpenMP threads are used with each occupies
one processor of an SMP node to process the
calculation of gravitational forces on the bodies in
parallel. Besides, loop scheduling with static, dynamic,
and guided methods is adopted to ensure sufficient
work with better load balance for the threads.
II. The n-body problem
A. Tree Code Algorithm

The n-body problem involves advancing the
trajectories of n bodies according to their time
evolving mutual gravitation field. The essence of the
tree code is the recognition that a distant group of
bodies can be well-approximated by a single body,
located at the center of mass with a mass equal to total
mass of the group. It represents the distribution of the
bodies in quad-tree for 2D space which is
implemented by recursively dividing the 2D space

into 4 subspaces, until each subspace contains one
body as illustrated in Figure 1. After the tree
construction phase, the force on a body in the system
can be evaluated by traversing down the tree from root.
B. Parallelization of Tree Code

Since the tree is very unbalanced when the bodies
are not uniformly distributed in their bounding box, it
is important to divide space into domains with equal
work-loads to avoid load imbalance. Therefore, the
Orthogonal Recursive Bisection (ORB) domain
decomposition is adopted to divide the space into as
many non-overlapping subspaces as processors, each
of which contains an approximately equal number of
bodies, and assign each subspace to a processor.

After the domain decomposition, each process has
only the local tree for local bodies. In principle, they
need the global tree to determine the forces due to the
effect of influence ring along the borders. For example,
node n belonging to process 0 has influence on bodies
along the borders with P1, P2, and P3 as displayed in
Figure 2. Thus node n, as well as other necessary
nodes which represent a cluster of bodies, is called
essential and must be known by P1, P2, and P3 to
compute the forces of bodies in the influence ring of n.
Each processor first collects all the nodes in its
domain deemed essential to other processors by
walking down its local tree from root, and then
exchanges these essential nodes directly with the
appropriate destination processors. Once all
processors have received and inserted the data
received into the local tree, each processor can
proceed exactly as in the sequential case.

Quadtree

Bodies

Fig. 1. Bodies in 2D space and the quad-tree.

n

Influence ring of n

Node n is
exported
from P0 to
local tree of
P1 (and P2,
P3 too)

P0

P1
P2

P3

Local tree of P0

Local tree of P1

n

n

root

root

Fig. 2. ORB decomposition and the influence ring of a node.

2r
mGmF ba=

Gravitational force F
between two bodies with
masses ma, mb and distance
r is given by:

C. Exploiting Two Levels of Parallelism with
Hybrid Parallel Programming Paradigm

Multiple levels of parallelism are achieved with the
hybrid program as shown in Figure 3. For the first
level, the bodies are distributed in a balanced way
among the MPI processes using ORB domain
decomposition. After local tree construction, the
processes collect and exchange essential nodes to each
other to insert into and expand the local trees. Each
process then walks through its own tree to create a list
of interactive nodes for each body similar to the case
of sequential algorithm. For the second level, the force
calculation is eminently suitable for parallelizing with
OpenMP work-sharing threads running in each MPI
process. The bodies and their corresponding list of
interactive nodes are assigned to different threads for
calculating the force on each body using
static/dynamic/guided scheduling with appropriate
chunk size. Hence, the hybrid program is expected to
speed up the performance.

III. Experimental results
Figure 4 displays the execution time of the MPI and

hybrid codes simulating the interactions among 105
bodies on our 4-way Diplo cluster and 2-way Atlantis
cluster, both with Xeon processors and Gigabit
Ethernet. In both clusters, no matter how many
processors are used, the hybrid implementation
outperforms the pure MPI one by average factors of
1.52 on Diplo and 1.21 on Atlantis at all times. We
also observe that the factor on Diplo is higher than on
Atlantis, resulting from a greater number of OpenMP
threads. As a result, it is expected that this factor will

be even higher in 8 or 16-way clusters.
In addition, another important advantage of the

hybrid model compared to pure MPI model is that it
lowers the number of sub-domains in ORB domain
decomposition. For instance, we need to create only 4
sub-domains for the hybrid program while 16 sub-
domains are necessary for the MPI program on 4-way
Diplo cluster. As the number of sub-domains increases,
the shapes of domains have a larger range of aspect
ratios forcing tree walks to proceed to deeper levels.
The complexity involved in determining essential
nodes also rises with the number of sub-domains. We
found that the number of interactions grows with the
number of sub-domains because of these effects. Thus,
the hybrid model helps reduce this interaction
overhead.

We also tested performance of the hybrid program
with a combination of different chunk sizes and
scheduling methods, including static, dynamic, and
guided on 4-way cluster using 8 and 16 CPUs. The
execution time obtained by running the hybrid code is
listed in Table I. Schedule dynamic outweighs
schedule static and guided in most cases, and the
chunk size has an important impact on the
performance. This means that choosing a chunk size is
a trade-off between the quality of load balancing and
the synchronization and computation costs.

IV. Conclusion
This paper described performance and

programming efforts for n-body problem under pure
MPI and hybrid MPI-OpenMP programming models.
With the hybrid model, after ORB domain
decomposition among MPI processes, the work load
of time-consuming routines for calculating forces of
the bodies is shared among OpenMP threads with loop
scheduling. Given these abilities, the hybrid program
outperforms the pure MPI programs by average
factors of 1.52 on 4-way cluster and 1.21 on 2-way
cluster.

REFERENCES
[1] K. Yamazaki, K. Ikegami, and S. Oyanagi, “Speed Improvement

of MPEG-2 Encoding using Hybrid Parallel Programming”, IPSJ
and IEICE, FIT 2006, Information Technology Letters, LC-005,
Vol.5, 2006.

[2] J. Dubinski, “A parallel treecode”, New Astronomy 1 (1996) 133-
147.

[3] Treecode, http://ifa.hawaii.edu/~barnes/treecode/

Execution time with 100,000 bodies

0

20

40

60

80

100

120

140

160

1 2 4 8 16 32
Number of Processors

Ti
m

e
in

 m
in

ut
es

Hybrid (4-way Diplo)
MPI (4-way Diplo)
Hybrid (2-way Atlantis)
MPI (2-way Atlantis)

Fig. 4. Execution time on 4-way Diplo and 2-way Atlantis clusters.

TABLE I
EXECUTION TIME WITH DIFFERENT SCHEDULES AND CHUNK SIZES

(SECONDS)

CHUNK SIZE 100 500 1000 2000 5000

Static 755.7 754.8 757 752.3 906.8
Dynamic 754.3 751.8 756.2 752.1 906.8

8
C

PU
s

Guided 758 765.5 756.3 767.7 908.8

Static 389.9 387.8 385.7 409.8 447.4

Dynamic 388.2 386.3 384.1 408.1 445.3

 1
6

C
PU

s

Guided 387.1 388.7 390.6 407.9 445.6

Local Tree Construction
Essential Nodes Exchange

List of Interactive Nodes for Each body

Thread 0 Thread 1

List of Bodies for Force Calculation

OpenMP

MPI

Domain Decomposition

Body

In
te

ra
ct

iv
e

N
od

es

Process 0
Local Tree Construction

Essential Nodes Exchange
List of Interactive Nodes for Each body

Thread 0 Thread 1

List of Bodies for Force Calculation

OpenMPBody

In
te

ra
ct

iv
e

N
od

es

Process 1

Fig. 3. Multiple levels of parallelism with the hybrid program.

