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Abstract— Clusters of SMP nodes provide support for a wide 

diversity of parallel programming paradigms. Combining both 
shared memory and message passing parallelization within the 
same application, the hybrid MPI-OpenMP paradigm is an 
emerging trend for parallel programming to fully exploit 
distributed shared-memory architecture. In this paper, we 
improve the performance of MPEG-2 encoder and n-body 
simulation by employing the hybrid MPI-OpenMP programming 
paradigm on SMP clusters. The hierarchical image data 
structure of MPEG bit-stream is eminently suitable for the 
hybrid model to achieve multiple levels of parallelism: MPI for 
parallelism at the group of pictures level across SMP nodes and 
OpenMP for parallelism within pictures at the slice level within 
each SMP node. Similarly, the work load of the force calculation 
which accounts for upwards of 90% of the cycles in typical 
computations in n-body simulation is shared among OpenMP 
threads after ORB domain decomposition among MPI processes. 
Besides, loop scheduling of OpenMP threads is adopted with 
appropriate chunk size to provide better load balance of work, 
leading to enhanced performance. With n-body simulation, 
experimental results demonstrate that the hybrid MPI-OpenMP 
program outperforms the corresponding pure MPI program by 
average factors of 1.52 on 4-way cluster and 1.21 on 2-way 
cluster. Likewise, the hybrid model offers a significant 
performance improvement of 18% compared to MPI model for 
the MPEG-2 encoder. 
 

Index Terms—Hybrid Parallel Programming, MPI, MPEG-2, 
n-body, OpenMP  
 

I. INTRODUCTION 
ARGE scale highly parallel systems based on cluster of 
SMP architecture are today’s dominant computing 
platforms which enable many different parallel 

programming paradigms. Optimal paradigms enable 
application developers to use the hardware architecture in a 
most efficient way, i.e., without any overhead induced by the 
programming paradigm. On distributed memory systems, MPI 
[9] is widely used for writing message passing programs 
across the nodes of a cluster while OpenMP [10] is a popular 
API for parallel programming on shared memory architecture. 
As a result, a combination of shared memory and message 
passing parallelization paradigms within the same application, 
hybrid programming, is expected to provide a more efficient 
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parallelization strategy for clusters of SMP nodes. The hybrid 
MPI-OpenMP approach supports multiple levels of 
parallelism on an SMP cluster where MPI is used to handle 
parallelism across nodes and OpenMP is employed to exploit 
parallelism within a node. 

There have been many efforts for porting message passing 
applications to hybrid applications, leaving both opportunities 
and challenges of getting higher performance with this model. 
The implementation, development and performance of hybrid 
program applications are discussed in [2]. The results 
demonstrate that this style of programming is not always be 
the most effective mechanism but can obtain significant 
benefits from some situations. Similarly, the results from 
comparing MPI with MPI-OpenMP for the NAS benchmarks 
[3] are clearly application-dependent. The hybrid approach 
becomes better when processors make the communication 
performance considerable and the level of parallelization is 
sufficient. Bush et al. [6] prove that hybrid MPI-OpenMP 
codes can give significant performance on kernel algorithms 
such as Cannon’s matrix multiply although it requires a 
substantial amount of work involved to achieve this. The 
performance of hybrid message-passing and shared-memory 
parallelism for discrete element modeling is presented in [4]. 
However, the authors conclude their current OpenMP 
implementation is not yet efficient enough for hybrid 
parallelism to outperform pure message-passing on an SMP 
cluster although OpenMP is more effective than MPI on a 
single SMP node.  

The aim of this paper is to improve the performance of 
MPEG-2 encoder and n-body simulation by employing the 
hybrid MPI-OpenMP programming paradigm on SMP 
clusters. The performance of MPEG-2 encoding application is 
becoming more important as the demand for multimedia 
applications increases. Moreover, the hierarchy of layers in an 
MPEG-2 bit-stream is eminently suitable for applying the 
hybrid paradigm to exploit two levels of parallelism: 
parallelism at the group of pictures level and parallelism 
within pictures at the slice level. Meanwhile, the n-body is a 
classical one, and appears in many areas of science and 
engineering, including astrophysics, molecular dynamics, and 
graphics. In the simulation of n-body, the specific routines for 
calculating the force of the bodies which account for almost 
90% of total computing time are very appropriate for 
parallelizing with OpenMP work-sharing directives. In 
addition, we removed unnecessary MPI intra-node 
communication and employed loop scheduling of OpenMP 
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threads with appropriate chunk size for better load balance in 
the hybrid model. The rest of the paper is structured as 
follows. Section 2 presents the hybrid MPI-OpenMP parallel 
programming paradigm. Parallelization and implementation of 
the MPEG-2 encoding application are detailed in section 3 
while the n-body simulation is described in section 4. Section 
5 analyzes the experimental results. Finally, we conclude our 
study in section 6.  

II. HYBRID MPI-OPENMP PROGRAMMING PARADIGM 
Often, hybrid MPI-OpenMP programming refers to a 

programming style in which communication between nodes is 
handled by MPI processes and each MPI process has several 
OpenMP threads running inside to occupy the CPUs of an 
SMP node. The number of OpenMP threads is equal to the 
number of CPUs in one SMP node and there are as many MPI 
processes as nodes in a cluster. However, this style, called 
process-to-process communication method, is only one in two 
main different hybrid programming styles characterized by 
whether OpenMP threads take part in communication between 
nodes or not. In process-to-process communication, MPI 
routines are invoked outside of OpenMP parallel regions, thus 
there is only MPI communication between nodes. On the other 
hand, in thread-to-thread communication, some MPI routines 
are placed inside of OpenMP parallel regions, leading to 
OpenMP threads’ involvement in inter-node communication. 

Each style has different merits and demerits [1], and 
appropriate for different classes of applications. For 
implementation of our applications, MPEG-2 encoder and n-
body simulation, the process-to-process communication model 

is more efficient. An MPEG-2 bit-stream can be easily broken 
into independent groups of pictures and MPI processes are 
used to carry out these groups. Each picture in turn can be 
processed in parallel with multiple OpenMP threads running 
inside MPI process. For the n-body simulation, parallelizing 
the specific time-consuming routines using lighter-weight 
OpenMP threads without having to communicate with each 
other is more effective.  

Furthermore, this method outweighs other methods in terms 
of communication overhead. It requires only inter-node 
communication between nodes since intra-node 
communication is substituted by direct access to the shared 
memory. Meanwhile, for example with pure MPI, additional 
intra-node communication is necessary within each node 
between MPI processes as illustrated in Figure 1. 

On the other hand, in OpenMP loop parallelization of 
hybrid MPI-OpenMP programs, there is no guarantee that just 
because a loop has been correctly parallelized, its performance 
will improve. In fact, in some circumstances parallelizing the 
wrong loop can slow the program down. Even when the 
choice of loop is reasonable, some performance tuning may be 
necessary to make the loop run acceptably fast. Hence, among 
several mechanisms for controlling this factor provided by 
OpenMP, we employed loop scheduling to ensure sufficient 
work with better load balance for OpenMP threads.  

 

III. MPEG-2 ENCODING APPLICATION 

A. MPEG Overview 
MPEG is an encoding and compression system for digital 

multimedia content defined by the Motion Pictures Expert 
Group [15]. The MPEG-2 video compression algorithm 
achieves very high rates of compression by removing both the 
temporal redundancy and spatial redundancy present in 
motion video. An important aspect of MPEG which can take 
advantage of the hybrid parallel programming is its layered 
structure. The hierarchy of layers in an MPEG bit-stream is 
arranged in the following order: Sequence, Group of Pictures 
(GOP), Picture, Slice, Macro-block, and Block (Figure 2). 
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Fig. 1.  Communication pattern in MPI and hybrid programming models.
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Fig. 2.  The hierarchy of layers in an MPEG bit-stream. 
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 The highest level in the layering is the sequence level. A 
sequence is made up of groups of pictures (GOPs). Each GOP 
is a grouping of a number of adjacent pictures. Pictures 
(frames) are further subdivided into slices, each of which 
defines a fragment of a row in the picture. Slices comprise a 
series of macro-blocks, which are 16x16 pixel groups 
containing the luminance and chrominance data for those 
pixels in the decoded picture. Macro-blocks are divided into 
blocks (6 to 12 depending upon format). A block is an 8x8 
pixel group that describes the luminance or chrominance for 
that group of pixels. Blocks are the basic unit of data at which 
the decoder processes the encoded video stream.  

The basic operation of an MPEG-2 encoder is described 
briefly in Figure 3. Two key techniques are intra-frame DCT 
coding for removing spatial redundancy and inter-frame 
prediction (MCP) for exploiting temporal redundancy by 
attempting to predict the frame to be coded from a previous 
'reference' frame. The coder subtracts the motion-compensated 
prediction from the source picture to form a 'prediction error' 
picture that represents the difference between the predicted 
macro-block and the actual macro-block being encoded. The 
prediction error is transformed with the DCT to produce 
blocks of DCT coefficients. The DCT coefficients are then 
quantized at Q to reduce the number of bits needed to 
represent each coefficient. The quantized DCT coefficients are 
Huffman coded in combination with run-level coding and zig-
zag scanning using a VLC which further reduces the average 
number of bits per coefficient. This is combined with motion 
vector data and other side information, and formed into a 
coded bit-stream out.  

The quantized DCT coefficients after Q also go to an 
internal loop to be inverse quantized (IQ) and inverse DCT 
transformed (IDCT). The predicted macro-block read out of 
the reference picture memory is added back to the residual on 
a pixel by pixel basis and stored back into memory to serve as 
MCP’s reference for predicting subsequent pictures. Another 
object is to have the data in the reference picture memory of 
the encoder match the data in that of the decoder.  

B. Exploiting Two Levels of Parallelism 
The hierarchical image data structure of MPEG bit-stream 

is eminently suitable for using the hybrid paradigm to apply 
parallelism beyond a single level. The possible choices for a 
task in MPEG are: Sequence, Group of Pictures (GOP), 
Picture, Slice, Macro-block, and Block. For the first level, 
parallelizing across sequences may lead to tasks which are too 
large and create load imbalance. Consequently, a more 
reasonable choice is to parallelize across GOPs. Since GOPs 
are relatively independent, there is essentially no inherent 
communication in the parallel algorithm. For the second level, 
assigning adjacent pictures to different tasks leads to many 
serializing dependencies, and associated synchronization 
among the tasks because one picture depends on other nearby 
pictures. Meanwhile, dividing tasks at macro-block or block 
level results in tiny tasks. Therefore, parallelism within a 
picture at slice level is the most appropriate approach. 

1) Parallelism at GOP level: At this level, the incoming 
stream is decomposed into GOPs which are assigned to MPI 
process. We implemented two styles of partitioning: block and 
cyclic. In the former, GOPs are divided into as many 
relatively equal blocks as MPI processes, and each carries out 
one block. In the latter, GOPs are distributed to MPI processes 
in a fashion similar to round-robin: the first process gets the 
first GOP, the second process gets the second GOP, and so on, 
until no more GOPs remain as shown in Figure 4. 

2) Parallelism at slice level: Parallelism at slice level is 
achieved by using multiple OpenMP threads running inside 
MPI to process slices within a picture in parallel. 
Synchronization among threads necessary at the end of every 
picture is trivial because the pictures have been loaded into the 
shared-memory. 

Our parallel implementations of MPEG-2 encoder are based 
on the corresponding sequential program provided by MPEG 
group [16]. The pseudo code of the hybrid program in which 
OpenMP directives are inserted in the MPI implementation for 
the main loop processing each picture is as follows: 
 
{ 
MPI_Initialize(); 
… 
MPI_Scatter(MPI_processes, GOPs); 
… 
For each picture in GOP{ 

Fig. 3.  Basic operation of MPEG-2 encoder. 
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#pragma omp parallel for private (n) 
//The work load here is divided among OpenMP 
threads 
For slice#0 to slice#n {Process_slice;} 
} 
… 
MPI_Gather(MPI_processes, output); 
… 
MPI_Finalize(); 
}  

 

IV. THE N-BODY SIMULATION 
The n-body problem involves advancing the trajectories of 

n bodies according to their time evolving mutual gravitation 
field. The Barnes-Hut method [16], or tree code algorithm, 
which has advantage of scaling only as O(NlogN) in 
computational cost, is widely used to solve this problem 
today. 

A. Tree Code Algorithm 
The essence of the tree code is the recognition that a distant 

group of bodies can be well-approximated by a single body, 
located at the center of mass with a mass equal to total mass of 
the group. It represents the distribution of the bodies in quad-
tree for 2D space or oct-tree for 3D space. The tree is 
implemented by recursively dividing the 2D space into 4 
subspaces, or 8 subspaces in 3D space, until the number of 
bodies in each subspace is below a certain threshold. Figure 5 
demonstrates the distribution of bodies in 2D space and the 
corresponding quad-tree.  

After the tree construction phase, the force on a body in the 
system can be evaluated by traversing down the tree from 
root. At each level, a cell is added to an interaction list if the 
cell is distant enough for a force evaluation. Otherwise, the 
traversal continues recursively with the children. The 
accumulated list of interacting cells and bodies is then looped 
through to calculate the force on the given body. Finally, each 
body updates its position and velocity based on the computed 
forces. 

B. Parallelization of Tree Code 
The sequential algorithm works well but there is a serious 

problem in parallelization of tree code. The tree is very 

unbalanced since the bodies are not uniformly distributed in 
their bounding box. Hence, it is important to divide space into 
domains with equal work-loads to avoid load imbalance. We 
adopted the Orthogonal Recursive Bisection (ORB) domain 
decomposition [18] to divide the space into as many non-
overlapping subspaces as processors, each of which contains 
an approximately equal number of bodies, and assign each 
subspace to a processor. Figure 6 shows the ORB domain 
decomposition in 2D space on 16 processors. 

Furthermore, in order for a processor to run tree code for 
computing forces of its own bodies, each processor builds a 
local tree for its set of bodies which is later extended into a 
Locally Essential Tree (LET). LET contains all the nodes of 
the global tree that are essential for the bodies contained 
within that processor. Each processor computes the 
destination processors for which the node might be essential; 
this involves the intersection of the annular region of 
influence of the node, called “influence ring”, with the ORB 
map as illustrated in Figure 7. Those bodies that are not in the 
influence ring are either too close to node u to apply center-of-
mass approximation, or far away enough to use u's parent's 
information, therefore u will be essential to only particles 
within its influence ring. As a result, each processor first 
collects all the information deemed essential to other nodes, 
and then exchanges data directly with the appropriate 
destinations. Once all processors have received and inserted 
the data received into the local tree, each processor has its 
own LET. Then, every processor can proceed exactly as in the 
sequential case.  

The parallel programs implementing the tree code have 
been developed from the sequential tree code provided by 
Joshua E. Barnes [17] in which the force calculation accounts 
for upwards of 90% of the cycles in typical computations. By 
using ORB domain decomposition to distribute the bodies in a 
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Fig. 5.  Bodies in 2D space and the quad-tree. 
  

 
 
Fig. 6.  ORB domain decomposition in 2D space on 16 processors. 
  

 
 
Fig. 7.  The influence ring of a node u in the ORB map. 
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balanced way among MPI processes and OpenMP threads for 
sharing work load of the force calculation in each process, the 
hybrid program is expected to speed up the performance. The 
following section briefly presents pseudo code of the hybrid 
program. 
 
{ 
MPI_Initialize(); 
… 
ORB_domain_decomposition(MPI_processes, 
bodies); 
Constructs_the_local_tree_code(my_bodies); 
Build_the_LET(MPI_processes); 
… 
#pragma omp parallel for private (n) schedule 
(type) 
//The work load here is divided among OpenMP 
threads 
For body#0 to body#n in interaction list 
{ 
Calculate_forces(); 
} 
… 
Move_bodies(my_bodies); 
… 
MPI_Finalize(); 
} 
 

V. EXPERIMENTAL RESULTS 
In this section, we describe timing runs of the codes taken 

on our SMP clusters focusing on performance with execution 
time as the metric for measurements. First we give a 
description of the compute platforms. Then the performance 
evaluation results of MPEG-2 encoder and n-body simulation 
are discussed. 

A. Compute Platforms 
System specifications of two SMP clusters used for 

evaluating the MPI and hybrid MPI-OpenMP programs are 
detailed in Table I. The codes are compiled using Intel C 
Compiler and MPI library of MPICH implementation. On 
these systems, we repeated the experiments 5 times and 
observed small performance variations with standard 
deviation for 5 measures less than 5%. The average of these 5 
measures is presented. 

 

B. The MPEG-2 Encoder 
The sample stream used for evaluating the MPEG-2 

encoding application is a group of animated pictures of natural 
scenery, a forest, where the movement is little. It consists of 

1920 frames with a length of 64 seconds in 3 different levels 
for the Main Profile: the High1440 Level (MP@HL), Main 
Level (MP@ML), and Low Level (MP@LL). Table II shows 
characteristics of each level varying resolution, number of 
frames per second, and bit rate. 

The performance of MPEG-2 encoder for those varying 
MPEG-2 levels run on the 2-way Atlantis cluster is displayed 
in Table III and Figure 8. Clearly, the hybrid programs are 
better than the pure MPI programs in most cases whatever 
processors and data sets are used. The benefits of multiple 
levels of parallelism offer a significant performance 
improvement of 18% for hybrid programs. We also noted that 
when the test stream with little movement is dealt with, for 
example images of a forest, it is possible to further shorten 
execution time with hybrid codes in comparison with MPI 
codes. Because the color is almost similar in scenery pictures 
of such little movement streams, the compression ratio is high. 
In contrast, this ratio is lower when processing complicated 
pictures of quick movements such as the sea waves. Namely, 
since the picture compression is done in the shared-memory 
with parallel OpenMP threads in the hybrid implementations, 
it is thought that the hybrid execution is becoming even more 
effective when the compressibility of still pictures is high.  

 
TABLE II 

CHARACTERISTICS OF DIFFERENT LEVELS FOR MPEG-2 MP 

Level Resolution Frames per second Max bit 
rate 

Low 
(MP@LL) 352 x 288 30 4Mb/s 

Main 
(MP@ML) 720 x 576 30 15Mb/s 

High 1440 
(MP@HL) 1440 x 1088 60 60Mb/s 

    

 
TABLE III 

EXECUTION TIME OF MPEG-2 ENCODER ON 2-WAY ATLANTIS 

# OF CPUS 2 4 8 16 32 

Hybrid 100.2 51.6 25.7 13.3 7.4 
Block 

MPI 116.9 59.2 29.9 15.1 8.5 

Hybrid 105.7 54.1 26.9 13.7 7.6 M
P@

H
L 

(m
in

ut
es

) 

Cyclic 
MPI 119 61.2 31.1 16 8.6 

Hybrid 20.8 10.5 5.4 3.1 2.6 
Block 

MPI 23.8 12 6.5 3.9 2.7 

Hybrid 21.9 11 5.6 3.1 2.5 

M
P@

M
L 

 
(m

in
ut

es
) 

Cyclic 
MPI 25 12.7 6.6 4.1 2.6 

Hybrid 291.4 150.5 80.1 62.8 70.9 
Block 

MPI 349.7 177.8 93.5 65.2 68.2 

Hybrid 315.8 158.9 85.6 60.1 63.9 M
P@

LL
 

(s
ec

on
ds

) 

Cyclic 
MPI 372 183.1 97.5 63.4 63.7 

        
 

TABLE I 
SYSTEM SPECIFICATIONS 

Name SMP Node # of 
Nodes 

# of 
CPUs Network 

Diplo Quad Xeon 
3GHz 4 16 Gigabit 

Ethernet 

Atlantis Dual Xeon 
2.8GHz 16 32 Gigabit 

Ethernet 
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In general, both pure MPI codes and hybrid codes scale 
well. However, in case of ML, speed improvement ratio 
decreases with 32 processors as against 16 processors (Figure 
8b). With LL the largest speed improvement has been 
achieved with 16 CPUs (Figure 8c). In case of 32 processors, 
with data sizes of ML and LL equal to 120MB and 36MB 
respectively, the effect of hybrid implementations slides with 
the data size smaller than 120MB, and LL hybrid execution 
has become slower than MPI execution with 32MB. 
Therefore, it is necessary to modify divided grain size 
according to the number of CPUs to maintain the efficiency of 
the hybrid codes.  

Concerning partitioning strategy, we remarked that the 
block partitioning outweighs cyclic partitioning with up to 8 
CPUs in all data sizes and the programs employing block 
partitioning are on average 5% faster than cyclic programs. 
The cyclic partitioning begins to take effect in ML with 32 
CPUs and in LL with 16 or more processors. Table IV 
presents execution time of the hybrid programs with different 
minimum units of cyclic partitioning compared to block 
partitioning using ML data size. With cyclic partitioning, we 
designated the minimum unit of division varying from 1 to 4 
GOPs, and the result with 4 GOPs is best for 32 processors 
whereas the block partitioning exhibits the best performance 
with 16 CPUs. However, as the number of frames inside GOP 
is variable, from several dozens to 100 frames, examination of 
the optimal unit of division, the number of frames, and other 
related issues is important.  

C. The n-body Simulation  
The n-body programs simulating the interactions among 105 

bodies in 10 timesteps have been run on the 4-way Diplo 
cluster and 2-way Atlantis cluster. Figure 9 and Table V 
display the execution time of the MPI and hybrid codes for a 
fixed number (1, 2, 4, 8, 16, and 32) of CPUs.  

In both clusters, no matter how many processors are used, 
the hybrid implementation outperforms the pure MPI one by 
average factors of 1.52 on Diplo and 1.21 on Atlantis at all 
times. We also observed that the factor on Diplo is higher than 
on Atlantis, resulting from a greater number of OpenMP 
threads on Diplo in contrast to Atlantis because there are 4 
OpenMP threads created on a 4-way compute node, and only 
2 OpenMP threads on a 2-way compute node for each MPI 
process to best suit the system architecture. As a result, it is 
expected that this factor will be even higher in 8 or 16-way 
clusters although we have not had the opportunity to test the 
codes in such systems. 

Besides, another important advantage of the hybrid model 
compared to pure MPI model is that it lowers the number of 
sub-domains in ORB domain decomposition. For instance, we 
need to create only 4 sub-domains for the hybrid program 
while 16 sub-domains are necessary for the MPI program on 
4-way Diplo cluster. As the number of sub-domains increases, 
the shapes of domains have a larger range of aspect ratios 

TABLE V 
EXECUTION TIME OF 105-BODY SIMULATION (IN MINUTES) 

# OF CPUS 1 2 4 8 16 32 

Hybrid - 48.6 24.9 12.6 6.4 - 

D
ip

lo
 

MPI 134.5 71.6 37.8 19.7 10.4 - 

Hybrid - 54.3 27.1 14.8 7.6 4 

A
tla

nt
is

 

MPI 124.3 63 31.9 16.2 8.3 4.3 

        
 

 
TABLE IV 

EXECUTION TIME OF CYCLIC PARTITIONING (SECONDS) 

# OF CPUS 2 4 8 16 32 

1GOP 1314.7 661.9 338.4 187.3 150.3 

2GOP 1366.2 689.8 361.0 208.2 149.1 

4GOP 1362.9 683.4 355.6 195.0 147.0 

Block 1248.5 629.3 322.5 184.9 158.0 
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Fig. 8.  Execution time of MPEG-2 encoder with MP@HL, MP@ML, MP@LL on 2-way Atlantis. 
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forcing tree walks to proceed to deeper levels. The complexity 
involved in determining locally essential data also rises with 
the number of sub-domains. We found that the number of cell 
interactions grows with the number of sub-domains because of 
these effects. Thus, the hybrid model helps reduce this cell 
interaction overhead.  

However, there is a main disadvantage that exists in both 
models. The memory requirements of the parallel tree code are 
quite large. The majority of memory is assigned to the body 
and cell arrays for the local subset of bodies with additional 
arrays for bodies and cells imported for the locally essential 
trees. On modern computing platforms with large amount of 
memory, it seems no longer a problem. We did not encounter 
any problem with memory on our systems. We also tested 
performance of the hybrid program with a combination of 
different scheduling methods and chunk sizes on 4-way 
cluster using 8 and 16 CPUs. The timing results obtained by 
running the hybrid code are listed in Table VI.  

The tested schedules are: 
 -- Static: Loop iterations are divided into pieces of size 

chunk and then statically assigned to threads in a round-robin 
fashion. 

 -- Dynamic: Loop iterations are divided into pieces of 

size chunk, and dynamically scheduled among the threads; 
when a thread finishes one chunk, it is dynamically assigned 
another. 

 -- Guided: For a chunk size of 1, the size of each chunk 
is proportional to the number of unassigned iterations divided 
by the number of threads, decreasing to 1. For a chunk size 
with value k greater than 1, the size of each chunk is 
determined in the same way with the restriction that the 
chunks do not contain fewer than k iterations (except for the 
last chunk to be assigned, which may have fewer than k 
iterations).  

From Table VI, it is easy to recognize that schedule 
dynamic outweighs schedule static and guided in most cases, 
and the chunk size has an important impact on the 
performance. As mentioned earlier, the routine calculating the 
force of bodies accounts for the vast majority of the cycles in 
typical calculations in this simulation. Synchronization 
overhead incurred by dynamic scheduling is trivial beside this 
computation time. Consequently, schedule dynamic is always 
better than schedule static with all chunk sizes, and also 
provides better load balance than schedule guided in many 
cases even though the difference among schedule styles is 
quite small.  

What made major difference here is the size of chunk used 
for scheduling. With chunk sizes equal to or less than 1000 
(16 CPUs) and 2000 (8 CPUs), execution time has not 
changed much with all schedule types. The chunk sizes of 500 
and 1000 are the best with dynamic scheduling in case of 8 
and 16 CPUs respectively. The quality of load balance drops 
with increasing chunk size and running time grows steadily 
with chunk size greater than 1000 (16 CPUs) and 2000 (8 
CPUs). As the bodies are not uniformly distributed in their 
bounding box, the force computation time varies enormously 
from one body to another. Therefore, a chunk size which is 
too large easily leads to load imbalance. This means that 
choosing a chunk size is a trade-off between the quality of 
load balancing and the synchronization and computation costs.  

 

 
TABLE VI 

EXECUTION TIME WITH DIFFERENT SCHEDULES AND CHUNK SIZES (SECONDS) 

CHUNK SIZE 1 100 500 1000 2000 5000 

Static 756.7 755.7 754.8 757 752.3 906.8 

Dynamic 755.2 754.3 751.8 756.2 752.1 906.8 

8 
C

PU
s 

Guided 754.1 758 765.5 756.3 767.7 908.8 

Static 385.9 389.9 387.8 385.7 409.8 447.4 

Dynamic 385.2 388.2 386.3 384.1 408.1 445.3 

 1
6 

C
PU

s 

Guided 385.6 387.1 388.7 390.6 407.9 445.6 
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Fig. 9.  Execution time of 105-body simulation on 4-way Diplo and 2-way Atlantis clusters. 
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VI. CONCLUSION 
In this paper, we studied the performance and the 

programming efforts for two different applications, MPEG-2 
encoder and n-body simulation, under two parallel 
programming paradigms: pure MPI and hybrid MPI-OpenMP. 
With the hybrid model, multiple levels of parallelism can be 
achieved. Parallelization is performed at both the GOP and 
slice levels in the MPEG-2 encoding application. Likewise, 
the work load of time-consuming routines for calculating 
forces of the bodies in n-body simulation is shared among 
OpenMP threads after ORB domain decomposition among 
MPI processes. In addition, loop scheduling of OpenMP 
threads is employed with appropriate chunk size for better 
load balance in the hybrid program, resulting in enhanced 
performance. Given these abilities, the hybrid MPI-OpenMP 
programs outperform the corresponding pure MPI programs in 
terms of execution time for both applications in most cases 
whatever processors and data sets are used. Thus, this paper 
gives a positive aspect of developing hybrid MPI-OpenMP 
parallel paradigms for real applications. With respect to the 
achieved results, we believe that for some certain classes of 
problems, the hybrid paradigm provides the most efficient 
mechanism to fully exploit clusters of SMP nodes.  

More experiments are necessary to evaluate the MPEG-2 
encoder on 4-way Diplo cluster with the best combination of 
chunk size and number of processors. Besides, the encoder is 
actually only one component of a video codec consisting of an 
encoder and a decoder, which respectively performs 
compression and decompression of video data. A full parallel 
version of video codec with both the encoder and decoder are 
parallelized is worth considering. For solving the n-body 
problem, a number of methods have also been introduced in 
addition to Barnes-Hut in which the Fast Multipole Method 
(FMM) algorithm [20] has been shown to be O(N). It is 
expected that superior performance can be achieved by 
adapting the parallel tree code using FMM algorithm. So far, 
the experiments have been done only on separate SMP 
clusters. Therefore, porting these programs to a multiple SMP 
cluster computing environment is a proper approach to 

maximize the use of resources and provide much higher 
throughput. 
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