
 1

Abstract— Clusters of SMP nodes provide support for a wide

diversity of parallel programming paradigms. Combining both
shared memory and message passing parallelization within the
same application, the hybrid MPI-OpenMP paradigm is an
emerging trend for parallel programming to fully exploit
distributed shared-memory architecture. In this paper, we
improve the performance of MPEG-2 encoder and n-body
simulation by employing the hybrid MPI-OpenMP programming
paradigm on SMP clusters. The hierarchical image data
structure of MPEG bit-stream is eminently suitable for the
hybrid model to achieve multiple levels of parallelism: MPI for
parallelism at the group of pictures level across SMP nodes and
OpenMP for parallelism within pictures at the slice level within
each SMP node. Similarly, the work load of the force calculation
which accounts for upwards of 90% of the cycles in typical
computations in n-body simulation is shared among OpenMP
threads after ORB domain decomposition among MPI processes.
Besides, loop scheduling of OpenMP threads is adopted with
appropriate chunk size to provide better load balance of work,
leading to enhanced performance. With n-body simulation,
experimental results demonstrate that the hybrid MPI-OpenMP
program outperforms the corresponding pure MPI program by
average factors of 1.52 on 4-way cluster and 1.21 on 2-way
cluster. Likewise, the hybrid model offers a significant
performance improvement of 18% compared to MPI model for
the MPEG-2 encoder.

Index Terms—Hybrid Parallel Programming, MPI, MPEG-2,
n-body, OpenMP

I. INTRODUCTION
ARGE scale highly parallel systems based on cluster of
SMP architecture are today’s dominant computing
platforms which enable many different parallel

programming paradigms. Optimal paradigms enable
application developers to use the hardware architecture in a
most efficient way, i.e., without any overhead induced by the
programming paradigm. On distributed memory systems, MPI
[9] is widely used for writing message passing programs
across the nodes of a cluster while OpenMP [10] is a popular
API for parallel programming on shared memory architecture.
As a result, a combination of shared memory and message
passing parallelization paradigms within the same application,
hybrid programming, is expected to provide a more efficient

Graduate School of Science and Engineering, Ritsumeikan University,

Shiga, Japan (e-mail: duy@hpc.cs.ritsumei.ac.jp).

parallelization strategy for clusters of SMP nodes. The hybrid
MPI-OpenMP approach supports multiple levels of
parallelism on an SMP cluster where MPI is used to handle
parallelism across nodes and OpenMP is employed to exploit
parallelism within a node.

There have been many efforts for porting message passing
applications to hybrid applications, leaving both opportunities
and challenges of getting higher performance with this model.
The implementation, development and performance of hybrid
program applications are discussed in [2]. The results
demonstrate that this style of programming is not always be
the most effective mechanism but can obtain significant
benefits from some situations. Similarly, the results from
comparing MPI with MPI-OpenMP for the NAS benchmarks
[3] are clearly application-dependent. The hybrid approach
becomes better when processors make the communication
performance considerable and the level of parallelization is
sufficient. Bush et al. [6] prove that hybrid MPI-OpenMP
codes can give significant performance on kernel algorithms
such as Cannon’s matrix multiply although it requires a
substantial amount of work involved to achieve this. The
performance of hybrid message-passing and shared-memory
parallelism for discrete element modeling is presented in [4].
However, the authors conclude their current OpenMP
implementation is not yet efficient enough for hybrid
parallelism to outperform pure message-passing on an SMP
cluster although OpenMP is more effective than MPI on a
single SMP node.

The aim of this paper is to improve the performance of
MPEG-2 encoder and n-body simulation by employing the
hybrid MPI-OpenMP programming paradigm on SMP
clusters. The performance of MPEG-2 encoding application is
becoming more important as the demand for multimedia
applications increases. Moreover, the hierarchy of layers in an
MPEG-2 bit-stream is eminently suitable for applying the
hybrid paradigm to exploit two levels of parallelism:
parallelism at the group of pictures level and parallelism
within pictures at the slice level. Meanwhile, the n-body is a
classical one, and appears in many areas of science and
engineering, including astrophysics, molecular dynamics, and
graphics. In the simulation of n-body, the specific routines for
calculating the force of the bodies which account for almost
90% of total computing time are very appropriate for
parallelizing with OpenMP work-sharing directives. In
addition, we removed unnecessary MPI intra-node
communication and employed loop scheduling of OpenMP

Hybrid MPI-OpenMP Paradigm on SMP clusters:
MPEG-2 Encoder and n-body Simulation
Truong Vinh Truong Duy, Katsuhiro Yamazaki, Kosai Ikegami, and Shigeru Oyanagi

L

 2

threads with appropriate chunk size for better load balance in
the hybrid model. The rest of the paper is structured as
follows. Section 2 presents the hybrid MPI-OpenMP parallel
programming paradigm. Parallelization and implementation of
the MPEG-2 encoding application are detailed in section 3
while the n-body simulation is described in section 4. Section
5 analyzes the experimental results. Finally, we conclude our
study in section 6.

II. HYBRID MPI-OPENMP PROGRAMMING PARADIGM
Often, hybrid MPI-OpenMP programming refers to a

programming style in which communication between nodes is
handled by MPI processes and each MPI process has several
OpenMP threads running inside to occupy the CPUs of an
SMP node. The number of OpenMP threads is equal to the
number of CPUs in one SMP node and there are as many MPI
processes as nodes in a cluster. However, this style, called
process-to-process communication method, is only one in two
main different hybrid programming styles characterized by
whether OpenMP threads take part in communication between
nodes or not. In process-to-process communication, MPI
routines are invoked outside of OpenMP parallel regions, thus
there is only MPI communication between nodes. On the other
hand, in thread-to-thread communication, some MPI routines
are placed inside of OpenMP parallel regions, leading to
OpenMP threads’ involvement in inter-node communication.

Each style has different merits and demerits [1], and
appropriate for different classes of applications. For
implementation of our applications, MPEG-2 encoder and n-
body simulation, the process-to-process communication model

is more efficient. An MPEG-2 bit-stream can be easily broken
into independent groups of pictures and MPI processes are
used to carry out these groups. Each picture in turn can be
processed in parallel with multiple OpenMP threads running
inside MPI process. For the n-body simulation, parallelizing
the specific time-consuming routines using lighter-weight
OpenMP threads without having to communicate with each
other is more effective.

Furthermore, this method outweighs other methods in terms
of communication overhead. It requires only inter-node
communication between nodes since intra-node
communication is substituted by direct access to the shared
memory. Meanwhile, for example with pure MPI, additional
intra-node communication is necessary within each node
between MPI processes as illustrated in Figure 1.

On the other hand, in OpenMP loop parallelization of
hybrid MPI-OpenMP programs, there is no guarantee that just
because a loop has been correctly parallelized, its performance
will improve. In fact, in some circumstances parallelizing the
wrong loop can slow the program down. Even when the
choice of loop is reasonable, some performance tuning may be
necessary to make the loop run acceptably fast. Hence, among
several mechanisms for controlling this factor provided by
OpenMP, we employed loop scheduling to ensure sufficient
work with better load balance for OpenMP threads.

III. MPEG-2 ENCODING APPLICATION

A. MPEG Overview
MPEG is an encoding and compression system for digital

multimedia content defined by the Motion Pictures Expert
Group [15]. The MPEG-2 video compression algorithm
achieves very high rates of compression by removing both the
temporal redundancy and spatial redundancy present in
motion video. An important aspect of MPEG which can take
advantage of the hybrid parallel programming is its layered
structure. The hierarchy of layers in an MPEG bit-stream is
arranged in the following order: Sequence, Group of Pictures
(GOP), Picture, Slice, Macro-block, and Block (Figure 2).

SMP0
Shared memory

P0 P1 P2 P3

SMP1
Shared memory

P0 P1 P2 P3

SMP2
Shared memory

P0 P1 P2 P3

SMP3
Shared memory

P0 P1 P2 P3

Inter-node com
m

unication

Intra-node communication

Pure MPI: intra- + inter-node
= vertical + horizontal messages

M
P

I + O
penM

P
: inter-node

(= only vertical m
essages)

Fig. 1. Communication pattern in MPI and hybrid programming models.

GOP

Sequence of bit-stream

Slice

Picture

8

8
Luminance block

Chrominance
block

Macro-block

8

8

Fig. 2. The hierarchy of layers in an MPEG bit-stream.

 3

 The highest level in the layering is the sequence level. A
sequence is made up of groups of pictures (GOPs). Each GOP
is a grouping of a number of adjacent pictures. Pictures
(frames) are further subdivided into slices, each of which
defines a fragment of a row in the picture. Slices comprise a
series of macro-blocks, which are 16x16 pixel groups
containing the luminance and chrominance data for those
pixels in the decoded picture. Macro-blocks are divided into
blocks (6 to 12 depending upon format). A block is an 8x8
pixel group that describes the luminance or chrominance for
that group of pixels. Blocks are the basic unit of data at which
the decoder processes the encoded video stream.

The basic operation of an MPEG-2 encoder is described
briefly in Figure 3. Two key techniques are intra-frame DCT
coding for removing spatial redundancy and inter-frame
prediction (MCP) for exploiting temporal redundancy by
attempting to predict the frame to be coded from a previous
'reference' frame. The coder subtracts the motion-compensated
prediction from the source picture to form a 'prediction error'
picture that represents the difference between the predicted
macro-block and the actual macro-block being encoded. The
prediction error is transformed with the DCT to produce
blocks of DCT coefficients. The DCT coefficients are then
quantized at Q to reduce the number of bits needed to
represent each coefficient. The quantized DCT coefficients are
Huffman coded in combination with run-level coding and zig-
zag scanning using a VLC which further reduces the average
number of bits per coefficient. This is combined with motion
vector data and other side information, and formed into a
coded bit-stream out.

The quantized DCT coefficients after Q also go to an
internal loop to be inverse quantized (IQ) and inverse DCT
transformed (IDCT). The predicted macro-block read out of
the reference picture memory is added back to the residual on
a pixel by pixel basis and stored back into memory to serve as
MCP’s reference for predicting subsequent pictures. Another
object is to have the data in the reference picture memory of
the encoder match the data in that of the decoder.

B. Exploiting Two Levels of Parallelism
The hierarchical image data structure of MPEG bit-stream

is eminently suitable for using the hybrid paradigm to apply
parallelism beyond a single level. The possible choices for a
task in MPEG are: Sequence, Group of Pictures (GOP),
Picture, Slice, Macro-block, and Block. For the first level,
parallelizing across sequences may lead to tasks which are too
large and create load imbalance. Consequently, a more
reasonable choice is to parallelize across GOPs. Since GOPs
are relatively independent, there is essentially no inherent
communication in the parallel algorithm. For the second level,
assigning adjacent pictures to different tasks leads to many
serializing dependencies, and associated synchronization
among the tasks because one picture depends on other nearby
pictures. Meanwhile, dividing tasks at macro-block or block
level results in tiny tasks. Therefore, parallelism within a
picture at slice level is the most appropriate approach.

1) Parallelism at GOP level: At this level, the incoming
stream is decomposed into GOPs which are assigned to MPI
process. We implemented two styles of partitioning: block and
cyclic. In the former, GOPs are divided into as many
relatively equal blocks as MPI processes, and each carries out
one block. In the latter, GOPs are distributed to MPI processes
in a fashion similar to round-robin: the first process gets the
first GOP, the second process gets the second GOP, and so on,
until no more GOPs remain as shown in Figure 4.

2) Parallelism at slice level: Parallelism at slice level is
achieved by using multiple OpenMP threads running inside
MPI to process slices within a picture in parallel.
Synchronization among threads necessary at the end of every
picture is trivial because the pictures have been loaded into the
shared-memory.

Our parallel implementations of MPEG-2 encoder are based
on the corresponding sequential program provided by MPEG
group [16]. The pseudo code of the hybrid program in which
OpenMP directives are inserted in the MPI implementation for
the main loop processing each picture is as follows:

{
MPI_Initialize();
…
MPI_Scatter(MPI_processes, GOPs);
…
For each picture in GOP{

Fig. 3. Basic operation of MPEG-2 encoder.

Block

GOP GOP GOP GOP GOP GOP GOP GOP

ノード0 ノード1 ノード 2 ノード3

GOP GOP GOP GOP GOP GOP GOP GOP

Node 0 Node1 Node 2 Node3

Cyclic

Fig. 4. Block and cyclic partitioning of GOPs

 4

#pragma omp parallel for private (n)
//The work load here is divided among OpenMP
threads
For slice#0 to slice#n {Process_slice;}
}
…
MPI_Gather(MPI_processes, output);
…
MPI_Finalize();
}

IV. THE N-BODY SIMULATION
The n-body problem involves advancing the trajectories of

n bodies according to their time evolving mutual gravitation
field. The Barnes-Hut method [16], or tree code algorithm,
which has advantage of scaling only as O(NlogN) in
computational cost, is widely used to solve this problem
today.

A. Tree Code Algorithm
The essence of the tree code is the recognition that a distant

group of bodies can be well-approximated by a single body,
located at the center of mass with a mass equal to total mass of
the group. It represents the distribution of the bodies in quad-
tree for 2D space or oct-tree for 3D space. The tree is
implemented by recursively dividing the 2D space into 4
subspaces, or 8 subspaces in 3D space, until the number of
bodies in each subspace is below a certain threshold. Figure 5
demonstrates the distribution of bodies in 2D space and the
corresponding quad-tree.

After the tree construction phase, the force on a body in the
system can be evaluated by traversing down the tree from
root. At each level, a cell is added to an interaction list if the
cell is distant enough for a force evaluation. Otherwise, the
traversal continues recursively with the children. The
accumulated list of interacting cells and bodies is then looped
through to calculate the force on the given body. Finally, each
body updates its position and velocity based on the computed
forces.

B. Parallelization of Tree Code
The sequential algorithm works well but there is a serious

problem in parallelization of tree code. The tree is very

unbalanced since the bodies are not uniformly distributed in
their bounding box. Hence, it is important to divide space into
domains with equal work-loads to avoid load imbalance. We
adopted the Orthogonal Recursive Bisection (ORB) domain
decomposition [18] to divide the space into as many non-
overlapping subspaces as processors, each of which contains
an approximately equal number of bodies, and assign each
subspace to a processor. Figure 6 shows the ORB domain
decomposition in 2D space on 16 processors.

Furthermore, in order for a processor to run tree code for
computing forces of its own bodies, each processor builds a
local tree for its set of bodies which is later extended into a
Locally Essential Tree (LET). LET contains all the nodes of
the global tree that are essential for the bodies contained
within that processor. Each processor computes the
destination processors for which the node might be essential;
this involves the intersection of the annular region of
influence of the node, called “influence ring”, with the ORB
map as illustrated in Figure 7. Those bodies that are not in the
influence ring are either too close to node u to apply center-of-
mass approximation, or far away enough to use u's parent's
information, therefore u will be essential to only particles
within its influence ring. As a result, each processor first
collects all the information deemed essential to other nodes,
and then exchanges data directly with the appropriate
destinations. Once all processors have received and inserted
the data received into the local tree, each processor has its
own LET. Then, every processor can proceed exactly as in the
sequential case.

The parallel programs implementing the tree code have
been developed from the sequential tree code provided by
Joshua E. Barnes [17] in which the force calculation accounts
for upwards of 90% of the cycles in typical computations. By
using ORB domain decomposition to distribute the bodies in a

Quadtree

Bodies

Fig. 5. Bodies in 2D space and the quad-tree.

Fig. 6. ORB domain decomposition in 2D space on 16 processors.

Fig. 7. The influence ring of a node u in the ORB map.

 5

balanced way among MPI processes and OpenMP threads for
sharing work load of the force calculation in each process, the
hybrid program is expected to speed up the performance. The
following section briefly presents pseudo code of the hybrid
program.

{
MPI_Initialize();
…
ORB_domain_decomposition(MPI_processes,
bodies);
Constructs_the_local_tree_code(my_bodies);
Build_the_LET(MPI_processes);
…
#pragma omp parallel for private (n) schedule
(type)
//The work load here is divided among OpenMP
threads
For body#0 to body#n in interaction list
{
Calculate_forces();
}
…
Move_bodies(my_bodies);
…
MPI_Finalize();
}

V. EXPERIMENTAL RESULTS
In this section, we describe timing runs of the codes taken

on our SMP clusters focusing on performance with execution
time as the metric for measurements. First we give a
description of the compute platforms. Then the performance
evaluation results of MPEG-2 encoder and n-body simulation
are discussed.

A. Compute Platforms
System specifications of two SMP clusters used for

evaluating the MPI and hybrid MPI-OpenMP programs are
detailed in Table I. The codes are compiled using Intel C
Compiler and MPI library of MPICH implementation. On
these systems, we repeated the experiments 5 times and
observed small performance variations with standard
deviation for 5 measures less than 5%. The average of these 5
measures is presented.

B. The MPEG-2 Encoder
The sample stream used for evaluating the MPEG-2

encoding application is a group of animated pictures of natural
scenery, a forest, where the movement is little. It consists of

1920 frames with a length of 64 seconds in 3 different levels
for the Main Profile: the High1440 Level (MP@HL), Main
Level (MP@ML), and Low Level (MP@LL). Table II shows
characteristics of each level varying resolution, number of
frames per second, and bit rate.

The performance of MPEG-2 encoder for those varying
MPEG-2 levels run on the 2-way Atlantis cluster is displayed
in Table III and Figure 8. Clearly, the hybrid programs are
better than the pure MPI programs in most cases whatever
processors and data sets are used. The benefits of multiple
levels of parallelism offer a significant performance
improvement of 18% for hybrid programs. We also noted that
when the test stream with little movement is dealt with, for
example images of a forest, it is possible to further shorten
execution time with hybrid codes in comparison with MPI
codes. Because the color is almost similar in scenery pictures
of such little movement streams, the compression ratio is high.
In contrast, this ratio is lower when processing complicated
pictures of quick movements such as the sea waves. Namely,
since the picture compression is done in the shared-memory
with parallel OpenMP threads in the hybrid implementations,
it is thought that the hybrid execution is becoming even more
effective when the compressibility of still pictures is high.

TABLE II

CHARACTERISTICS OF DIFFERENT LEVELS FOR MPEG-2 MP

Level Resolution Frames per second Max bit
rate

Low
(MP@LL) 352 x 288 30 4Mb/s

Main
(MP@ML) 720 x 576 30 15Mb/s

High 1440
(MP@HL) 1440 x 1088 60 60Mb/s

TABLE III

EXECUTION TIME OF MPEG-2 ENCODER ON 2-WAY ATLANTIS

OF CPUS 2 4 8 16 32

Hybrid 100.2 51.6 25.7 13.3 7.4
Block

MPI 116.9 59.2 29.9 15.1 8.5

Hybrid 105.7 54.1 26.9 13.7 7.6 M
P@

H
L

(m
in

ut
es

)

Cyclic
MPI 119 61.2 31.1 16 8.6

Hybrid 20.8 10.5 5.4 3.1 2.6
Block

MPI 23.8 12 6.5 3.9 2.7

Hybrid 21.9 11 5.6 3.1 2.5

M
P@

M
L

(m

in
ut

es
)

Cyclic
MPI 25 12.7 6.6 4.1 2.6

Hybrid 291.4 150.5 80.1 62.8 70.9
Block

MPI 349.7 177.8 93.5 65.2 68.2

Hybrid 315.8 158.9 85.6 60.1 63.9 M
P@

LL

(s
ec

on
ds

)

Cyclic
MPI 372 183.1 97.5 63.4 63.7

TABLE I
SYSTEM SPECIFICATIONS

Name SMP Node # of
Nodes

of
CPUs Network

Diplo Quad Xeon
3GHz 4 16 Gigabit

Ethernet

Atlantis Dual Xeon
2.8GHz 16 32 Gigabit

Ethernet

 6

In general, both pure MPI codes and hybrid codes scale
well. However, in case of ML, speed improvement ratio
decreases with 32 processors as against 16 processors (Figure
8b). With LL the largest speed improvement has been
achieved with 16 CPUs (Figure 8c). In case of 32 processors,
with data sizes of ML and LL equal to 120MB and 36MB
respectively, the effect of hybrid implementations slides with
the data size smaller than 120MB, and LL hybrid execution
has become slower than MPI execution with 32MB.
Therefore, it is necessary to modify divided grain size
according to the number of CPUs to maintain the efficiency of
the hybrid codes.

Concerning partitioning strategy, we remarked that the
block partitioning outweighs cyclic partitioning with up to 8
CPUs in all data sizes and the programs employing block
partitioning are on average 5% faster than cyclic programs.
The cyclic partitioning begins to take effect in ML with 32
CPUs and in LL with 16 or more processors. Table IV
presents execution time of the hybrid programs with different
minimum units of cyclic partitioning compared to block
partitioning using ML data size. With cyclic partitioning, we
designated the minimum unit of division varying from 1 to 4
GOPs, and the result with 4 GOPs is best for 32 processors
whereas the block partitioning exhibits the best performance
with 16 CPUs. However, as the number of frames inside GOP
is variable, from several dozens to 100 frames, examination of
the optimal unit of division, the number of frames, and other
related issues is important.

C. The n-body Simulation
The n-body programs simulating the interactions among 105

bodies in 10 timesteps have been run on the 4-way Diplo
cluster and 2-way Atlantis cluster. Figure 9 and Table V
display the execution time of the MPI and hybrid codes for a
fixed number (1, 2, 4, 8, 16, and 32) of CPUs.

In both clusters, no matter how many processors are used,
the hybrid implementation outperforms the pure MPI one by
average factors of 1.52 on Diplo and 1.21 on Atlantis at all
times. We also observed that the factor on Diplo is higher than
on Atlantis, resulting from a greater number of OpenMP
threads on Diplo in contrast to Atlantis because there are 4
OpenMP threads created on a 4-way compute node, and only
2 OpenMP threads on a 2-way compute node for each MPI
process to best suit the system architecture. As a result, it is
expected that this factor will be even higher in 8 or 16-way
clusters although we have not had the opportunity to test the
codes in such systems.

Besides, another important advantage of the hybrid model
compared to pure MPI model is that it lowers the number of
sub-domains in ORB domain decomposition. For instance, we
need to create only 4 sub-domains for the hybrid program
while 16 sub-domains are necessary for the MPI program on
4-way Diplo cluster. As the number of sub-domains increases,
the shapes of domains have a larger range of aspect ratios

TABLE V
EXECUTION TIME OF 105-BODY SIMULATION (IN MINUTES)

OF CPUS 1 2 4 8 16 32

Hybrid - 48.6 24.9 12.6 6.4 -

D
ip

lo

MPI 134.5 71.6 37.8 19.7 10.4 -

Hybrid - 54.3 27.1 14.8 7.6 4

A
tla

nt
is

MPI 124.3 63 31.9 16.2 8.3 4.3

TABLE IV

EXECUTION TIME OF CYCLIC PARTITIONING (SECONDS)

OF CPUS 2 4 8 16 32

1GOP 1314.7 661.9 338.4 187.3 150.3

2GOP 1366.2 689.8 361.0 208.2 149.1

4GOP 1362.9 683.4 355.6 195.0 147.0

Block 1248.5 629.3 322.5 184.9 158.0

0

20

40

60

80

100

120

140

2 4 8 16 32
Number of Processors

Ti
m

e
in

 m
in

ut
es

Block (Hybrid)

Block (MPI)

Cyclic (Hybrid, lower dashed line)

Cyclic (MPI, upper dashed line)

0

5

10

15

20

25

30

2 4 8 16 32
Number of Processors

Ti
m

e
in

 m
in

ut
es

Block (Hybrid)

Block (MPI)

Cyclic (Hybrid, lower dashed line)

Cyclic (MPI, upper dashed line)

0

50

100

150

200

250

300

350

400

2 4 8 16 32
Number of Processors

Ti
m

e
in

 s
ec

on
ds

Block (Hybrid)

Block (MPI)

Cyclic (Hybrid, lower dashed line)

Cyclic (MPI, upper dashed line)

 (a) MP@HL (b) MP@ML (c) MP@LL

Fig. 8. Execution time of MPEG-2 encoder with MP@HL, MP@ML, MP@LL on 2-way Atlantis.

 7

forcing tree walks to proceed to deeper levels. The complexity
involved in determining locally essential data also rises with
the number of sub-domains. We found that the number of cell
interactions grows with the number of sub-domains because of
these effects. Thus, the hybrid model helps reduce this cell
interaction overhead.

However, there is a main disadvantage that exists in both
models. The memory requirements of the parallel tree code are
quite large. The majority of memory is assigned to the body
and cell arrays for the local subset of bodies with additional
arrays for bodies and cells imported for the locally essential
trees. On modern computing platforms with large amount of
memory, it seems no longer a problem. We did not encounter
any problem with memory on our systems. We also tested
performance of the hybrid program with a combination of
different scheduling methods and chunk sizes on 4-way
cluster using 8 and 16 CPUs. The timing results obtained by
running the hybrid code are listed in Table VI.

The tested schedules are:
 -- Static: Loop iterations are divided into pieces of size

chunk and then statically assigned to threads in a round-robin
fashion.

 -- Dynamic: Loop iterations are divided into pieces of

size chunk, and dynamically scheduled among the threads;
when a thread finishes one chunk, it is dynamically assigned
another.

 -- Guided: For a chunk size of 1, the size of each chunk
is proportional to the number of unassigned iterations divided
by the number of threads, decreasing to 1. For a chunk size
with value k greater than 1, the size of each chunk is
determined in the same way with the restriction that the
chunks do not contain fewer than k iterations (except for the
last chunk to be assigned, which may have fewer than k
iterations).

From Table VI, it is easy to recognize that schedule
dynamic outweighs schedule static and guided in most cases,
and the chunk size has an important impact on the
performance. As mentioned earlier, the routine calculating the
force of bodies accounts for the vast majority of the cycles in
typical calculations in this simulation. Synchronization
overhead incurred by dynamic scheduling is trivial beside this
computation time. Consequently, schedule dynamic is always
better than schedule static with all chunk sizes, and also
provides better load balance than schedule guided in many
cases even though the difference among schedule styles is
quite small.

What made major difference here is the size of chunk used
for scheduling. With chunk sizes equal to or less than 1000
(16 CPUs) and 2000 (8 CPUs), execution time has not
changed much with all schedule types. The chunk sizes of 500
and 1000 are the best with dynamic scheduling in case of 8
and 16 CPUs respectively. The quality of load balance drops
with increasing chunk size and running time grows steadily
with chunk size greater than 1000 (16 CPUs) and 2000 (8
CPUs). As the bodies are not uniformly distributed in their
bounding box, the force computation time varies enormously
from one body to another. Therefore, a chunk size which is
too large easily leads to load imbalance. This means that
choosing a chunk size is a trade-off between the quality of
load balancing and the synchronization and computation costs.

TABLE VI

EXECUTION TIME WITH DIFFERENT SCHEDULES AND CHUNK SIZES (SECONDS)

CHUNK SIZE 1 100 500 1000 2000 5000

Static 756.7 755.7 754.8 757 752.3 906.8

Dynamic 755.2 754.3 751.8 756.2 752.1 906.8

8
C

PU
s

Guided 754.1 758 765.5 756.3 767.7 908.8

Static 385.9 389.9 387.8 385.7 409.8 447.4

Dynamic 385.2 388.2 386.3 384.1 408.1 445.3

 1
6

C
PU

s

Guided 385.6 387.1 388.7 390.6 407.9 445.6

 4-way Diplo

Pure MPI
program

Hybrid
program

0
20
40
60
80

100
120
140
160

1 2 4 8 16

Number of Processors

Ti
m

e
in

 m
in

ut
es

2-way Atlantis

Pure MPI
program

Hybrid
program

0
20
40
60
80

100
120
140

1 2 4 8 16 32

Number of Processors

Ti
m

e
in

 m
in

ut
es

Fig. 9. Execution time of 105-body simulation on 4-way Diplo and 2-way Atlantis clusters.

 8

VI. CONCLUSION
In this paper, we studied the performance and the

programming efforts for two different applications, MPEG-2
encoder and n-body simulation, under two parallel
programming paradigms: pure MPI and hybrid MPI-OpenMP.
With the hybrid model, multiple levels of parallelism can be
achieved. Parallelization is performed at both the GOP and
slice levels in the MPEG-2 encoding application. Likewise,
the work load of time-consuming routines for calculating
forces of the bodies in n-body simulation is shared among
OpenMP threads after ORB domain decomposition among
MPI processes. In addition, loop scheduling of OpenMP
threads is employed with appropriate chunk size for better
load balance in the hybrid program, resulting in enhanced
performance. Given these abilities, the hybrid MPI-OpenMP
programs outperform the corresponding pure MPI programs in
terms of execution time for both applications in most cases
whatever processors and data sets are used. Thus, this paper
gives a positive aspect of developing hybrid MPI-OpenMP
parallel paradigms for real applications. With respect to the
achieved results, we believe that for some certain classes of
problems, the hybrid paradigm provides the most efficient
mechanism to fully exploit clusters of SMP nodes.

More experiments are necessary to evaluate the MPEG-2
encoder on 4-way Diplo cluster with the best combination of
chunk size and number of processors. Besides, the encoder is
actually only one component of a video codec consisting of an
encoder and a decoder, which respectively performs
compression and decompression of video data. A full parallel
version of video codec with both the encoder and decoder are
parallelized is worth considering. For solving the n-body
problem, a number of methods have also been introduced in
addition to Barnes-Hut in which the Fast Multipole Method
(FMM) algorithm [20] has been shown to be O(N). It is
expected that superior performance can be achieved by
adapting the parallel tree code using FMM algorithm. So far,
the experiments have been done only on separate SMP
clusters. Therefore, porting these programs to a multiple SMP
cluster computing environment is a proper approach to

maximize the use of resources and provide much higher
throughput.

REFERENCES
[1] R. Rabenseifner, “Hybrid Parallel Programming: Performance Problems

and Chances”, Proc. of the 45th Cray User Group Conference, 2003.
[2] L.Smith, M.Bulk, “Development of Mixed Mode MPI/OpenMP

Applications”, WOMPAT 2000, 2000.
[3] F. Cappello, and D. Etiemble, “MPI versus MPI+OpenMP on IBM SP

for the NAS Benchmarks”, Proc. of Supercomputing, 2000.
[4] D. S. Henty, “Performance of Hybrid Message-Passing and Shared-

Memory Parallelism for Discrete Element Modeling”, Proc. of
Supercomputing, 2000.

[5] L.A. Smith, and P. Kent, “Development and performance of a mixed
OpenMP/MPI Quantum Monte Carlo code”, Concurrency: Practice and
Experience 12 (2000), 1121–1129.

[6] I.J. Bush, C.J. Noble, and R.J. Allan, “Mixed OpenMP and MPI for
Parallel Fortran Applications”,
http://www.ukhec.ac.uk/publications/reports/ewomp paper.pdf..

[7] A. Kneer, “Industrial Hybrid OpenMP/MPI CFD application for
Practical Use in Free-surface Flow Calculations”, WOMPAT2000:
Workshop on OpenMP Applications and Tools, 2000.

[8] Yun He, and C. HQ Ding, “MPI and OpenMP paradigms on cluster of
SMP architectures: the vacancy tracking algorithm for multi-dimensional
array transposition”, Supercomputing 2002.

[9] MPI, MPI: A Message-Passing Interface standard. Message Passing
Interface Forum, June 1995, http://www.mpiforum.org/.

[10] OpenMP, The OpenMP ARB, http://www.openmp.org/
[11] K. Yamazaki, K. Ikegami, and S. Oyanagi, “Speed Improvement of

MPEG-2 Encoding using Hybrid Parallel Programming”, IPSJ and
IEICE, FIT 2006, Information Technology Letters, LC-005, Vol.5, 2006.

[12] E. Iwata, and K. Olukotun, “Exploiting Coarse-Grain Parallelism in the
MPEG-2 Algorithm”, CSL-TR-. 98-771, 1998.

[13] S.M. Akramullah, I. Ahmad, and M. L. Liou, “A data-parallel approach
for real-time MPEG-2 video encoding”, Journal of Parallel and
Distributed Computing, 30(2):129–146, 1995.

[14] A. Bilas, J. Fritts, and J. P. Singh, “Real-Time Parallel MPEG-2
Decoding in Software," TR-516-96, Princeton University, 1996.

[15] MPEG, MPEG group, http://www.mpeg.org/MPEG/MSSG/
[16] J. Barnes, and P. Hut, “A hiearchical o(nlogn) force calculation

algorithm”, Nature, Vol.324, pp.446--449, 1986.
[17] Treecode, treecode guide,

http://ifa.hawaii.edu/~barnes/treecode/treeguide.html
[18] J. Dubinski, “A parallel tree code”, New Astronomy 1 (1996) 133-147.
[19] P. Mioochi, “Simulation of the dynamics of globular clusters: an

efficient parallelization of a tree-code”, Proc. of the conference
“Dynamics of Star Clusters and the Milky Way”, 2000.

[20] J. Makino, “Yet another fast multipole method without multipoles ---
pseudo-particle multipole method”, Journal of Computational Physics,
Vol.151, pp.910--920, 1999.

